
PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information.
PDF generated at: Sun, 20 Oct 2013 01:48:50 UTC

Database Management
Systems
eBooks For All Edition
(www.ebooks-for-all.com)

Contents
Articles

Database 1
Database model 16
Database normalization 23
Database storage structures 31
Distributed database 33
Federated database system 36
Referential integrity 40
Relational algebra 41
Relational calculus 53
Relational database 53
Relational database management system 57
Relational model 59
Object-relational database 69
Transaction processing 72

Concepts 76

ACID 76
Create, read, update and delete 79
Null (SQL) 80
Candidate key 96
Foreign key 98
Unique key 102
Superkey 105
Surrogate key 107
Armstrong's axioms 111

Objects 113

Relation (database) 113
Table (database) 115
Column (database) 116
Row (database) 117
View (SQL) 118
Database transaction 120
Transaction log 123

Database trigger 124
Database index 130
Stored procedure 135
Cursor (databases) 138
Partition (database) 143

Components 145

Concurrency control 145
Data dictionary 152
Java Database Connectivity 154
XQuery API for Java 157
ODBC 163
Query language 169
Query optimization 170
Query plan 173

Functions 175

Database administration and automation 175
Replication (computing) 177

Database Products 183

Comparison of object database management systems 183
Comparison of object-relational database management systems 185
List of relational database management systems 187
Comparison of relational database management systems 190
Document-oriented database 213
Graph database 217
NoSQL 226
NewSQL 232

References
Article Sources and Contributors 234
Image Sources, Licenses and Contributors 240

Article Licenses
License 241

Database 1

Database
A database is an organized collection of data. The data are typically organized to model relevant aspects of reality in
a way that supports processes requiring this information. For example, modeling the availability of rooms in hotels in
a way that supports finding a hotel with vacancies.
Database management systems (DBMSs) are specially designed applications that interact with the user, other
applications, and the database itself to capture and analyze data. A general-purpose database management system
(DBMS) is a software system designed to allow the definition, creation, querying, update, and administration of
databases. Well-known DBMSs include MySQL, PostgreSQL, SQLite, Microsoft SQL Server,Oracle, SAP, dBASE,
FoxPro, IBM DB2, LibreOffice Base and FileMaker Pro. A database is not generally portable across different
DBMS, but different DBMSs can by using standards such as SQL and ODBC or JDBC to allow a single application
to work with more than one database.

Terminology and overview
Formally, the term "database" refers to the data itself and supporting data structures. Databases are created to operate
large quantities of information by inputting, storing, retrieving, and managing that information. Databases are set up
so that one set of software programs provides all users with access to all the data.
A "database management system" (DBMS) is a suite of computer software providing the interface between users and
a database or databases. Because they are so closely related, the term "database" when used casually often refers to
both a DBMS and the data it manipulates.
Outside the world of professional information technology, the term database is sometimes used casually to refer to
any collection of data (perhaps a spreadsheet, maybe even a card index). This article is concerned only with
databases where the size and usage requirements necessitate use of a database management system.[1]

The interactions catered for by most existing DBMS fall into four main groups:
•• Data definition. Defining new data structures for a database, removing data structures from the database,

modifying the structure of existing data.
•• Update. Inserting, modifying, and deleting data.
•• Retrieval. Obtaining information either for end-user queries and reports or for processing by applications.
• Administration. Registering and monitoring users, enforcing data security, monitoring performance, maintaining

data integrity, dealing with concurrency control, and recovering information if the system fails.
A DBMS is responsible for maintaining the integrity and security of stored data, and for recovering information if
the system fails.
Both a database and its DBMS conform to the principles of a particular database model.[2] "Database system" refers
collectively to the database model, database management system, and database.[3]

Physically, database servers are dedicated computers that hold the actual databases and run only the DBMS and
related software. Database servers are usually multiprocessor computers, with generous memory and RAID disk
arrays used for stable storage. RAID is used for recovery of data if any of the disks fails. Hardware database
accelerators, connected to one or more servers via a high-speed channel, are also used in large volume transaction
processing environments. DBMSs are found at the heart of most database applications. DBMSs may be built around
a custom multitasking kernel with built-in networking support, but modern DBMSs typically rely on a standard
operating system to provide these functions. [citation needed] Since DBMSs comprise a significant economical market,
computer and storage vendors often take into account DBMS requirements in their own development plans.[citation

needed]

http://en.wikipedia.org/w/index.php?title=Data_%28computing%29
http://en.wikipedia.org/w/index.php?title=Computer_software
http://en.wikipedia.org/w/index.php?title=MySQL
http://en.wikipedia.org/w/index.php?title=PostgreSQL
http://en.wikipedia.org/w/index.php?title=SQLite
http://en.wikipedia.org/w/index.php?title=Microsoft_SQL_Server
http://en.wikipedia.org/w/index.php?title=Oracle_Database
http://en.wikipedia.org/w/index.php?title=SAP_AG
http://en.wikipedia.org/w/index.php?title=DBASE
http://en.wikipedia.org/w/index.php?title=FoxPro
http://en.wikipedia.org/w/index.php?title=IBM_DB2
http://en.wikipedia.org/w/index.php?title=LibreOffice_Base
http://en.wikipedia.org/w/index.php?title=FilemakerPro
http://en.wikipedia.org/w/index.php?title=Software_portability
http://en.wikipedia.org/w/index.php?title=Technical_standard
http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=JDBC
http://en.wikipedia.org/w/index.php?title=Data_structures
http://en.wikipedia.org/w/index.php?title=Information_technology
http://en.wikipedia.org/w/index.php?title=Spreadsheet
http://en.wikipedia.org/w/index.php?title=Data_security
http://en.wikipedia.org/w/index.php?title=Data_integrity
http://en.wikipedia.org/w/index.php?title=Data_recovery
http://en.wikipedia.org/w/index.php?title=Multiprocessor
http://en.wikipedia.org/w/index.php?title=Redundant_array_of_independent_disks
http://en.wikipedia.org/w/index.php?title=Database_application
http://en.wikipedia.org/w/index.php?title=Computer_multitasking
http://en.wikipedia.org/w/index.php?title=Kernel_%28computing%29
http://en.wikipedia.org/w/index.php?title=Computer_network
http://en.wikipedia.org/w/index.php?title=Operating_system
http://en.wikipedia.org/wiki/Citation_needed
http://en.wikipedia.org/w/index.php?title=Economy
http://en.wikipedia.org/w/index.php?title=Market
http://en.wikipedia.org/wiki/Citation_needed
http://en.wikipedia.org/wiki/Citation_needed

Database 2

Databases and DBMSs can be categorized according to the database model(s) that they support (such as relational or
XML), the type(s) of computer they run on (from a server cluster to a mobile phone), the query language(s) used to
access the database (such as SQL or XQuery), and their internal engineering, which affects performance, scalability,
resilience, and security.

Applications and roles
Most organizations in developed countries today depend on databases for their business operations. Increasingly,
databases are not only used to support the internal operations of the organization, but also to underpin its online
interactions with customers and suppliers (see Enterprise software). Databases are not used only to hold
administrative information, but are often embedded within applications to hold more specialized data: for example
engineering data or economic models. Examples of database applications include computerized library systems,
flight reservation systems, and computerized parts inventory systems.
Client-server or transactional DBMSs are often complex to maintain high performance, availability and security
when many users are querying and updating the database at the same time. Personal, desktop-based database systems
tend to be less complex. For example, FileMaker and Microsoft Access come with built-in graphical user interfaces.

General-purpose and special-purpose DBMSs
A DBMS has evolved into a complex software system and its development typically requires thousands of
person-years of development effort.[4] Some general-purpose DBMSs such as Adabas, Oracle and DB2 have been
undergoing upgrades since the 1970s. General-purpose DBMSs aim to meet the needs of as many applications as
possible, which adds to the complexity. However, the fact that their development cost can be spread over a large
number of users means that they are often the most cost-effective approach. However, a general-purpose DBMS is
not always the optimal solution: in some cases a general-purpose DBMS may introduce unnecessary overhead.
Therefore, there are many examples of systems that use special-purpose databases. A common example is an email
system: email systems are designed to optimize the handling of email messages, and do not need significant portions
of a general-purpose DBMS functionality.
Many databases have application software that accesses the database on behalf of end-users, without exposing the
DBMS interface directly. Application programmers may use a wire protocol directly, or more likely through an
application programming interface. Database designers and database administrators interact with the DBMS through
dedicated interfaces to build and maintain the applications' databases, and thus need some more knowledge and
understanding about how DBMSs operate and the DBMSs' external interfaces and tuning parameters.
General-purpose databases are usually developed by one organization or community of programmers, while a
different group builds the applications that use it. In many companies, specialized database administrators maintain
databases, run reports, and may work on code that runs on the databases themselves (rather than in the client
application).

History
With the progress in technology in the areas of processors, computer memory, computer storage and computer
networks, the sizes, capabilities, and performance of databases and their respective DBMSs have grown in orders of
magnitudes.
The development of database technology can be divided into three eras based on data model or structure:
navigational,[5] SQL/relational, and post-relational. The two main early navigational data models were the
hierarchical model, epitomized by IBM's IMS system, and the Codasyl model (Network model), implemented in a
number of products such as IDMS.

http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=XQuery
http://en.wikipedia.org/w/index.php?title=Business_operations
http://en.wikipedia.org/w/index.php?title=Enterprise_software
http://en.wikipedia.org/w/index.php?title=Library
http://en.wikipedia.org/w/index.php?title=Flight_reservation_system
http://en.wikipedia.org/w/index.php?title=Parts_inventory_system
http://en.wikipedia.org/w/index.php?title=Client-server
http://en.wikipedia.org/w/index.php?title=IT_Performance_Management
http://en.wikipedia.org/w/index.php?title=Availability
http://en.wikipedia.org/w/index.php?title=Security
http://en.wikipedia.org/w/index.php?title=FileMaker
http://en.wikipedia.org/w/index.php?title=Microsoft_Access
http://en.wikipedia.org/w/index.php?title=Graphical_user_interface
http://en.wikipedia.org/w/index.php?title=Adabas
http://en.wikipedia.org/w/index.php?title=Email
http://en.wikipedia.org/w/index.php?title=Application_software
http://en.wikipedia.org/w/index.php?title=Wire_protocol
http://en.wikipedia.org/w/index.php?title=Application_programming_interface
http://en.wikipedia.org/w/index.php?title=Database_administrator
http://en.wikipedia.org/w/index.php?title=Processors
http://en.wikipedia.org/w/index.php?title=Computer_memory
http://en.wikipedia.org/w/index.php?title=Computer_storage
http://en.wikipedia.org/w/index.php?title=Computer_networks
http://en.wikipedia.org/w/index.php?title=Computer_networks
http://en.wikipedia.org/w/index.php?title=Navigational_database
http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=Hierarchical_database_model
http://en.wikipedia.org/w/index.php?title=Codasyl
http://en.wikipedia.org/w/index.php?title=Network_model
http://en.wikipedia.org/w/index.php?title=IDMS

Database 3

The relational model, first proposed in 1970 by Edgar F. Codd, departed from this tradition by insisting that
applications should search for data by content, rather than by following links. The relational model is made up of
ledger-style tables, each used for a different type of entity. It was not until the mid-1980s that computing hardware
became powerful enough to allow relational systems (DBMSs plus applications) to be widely deployed. By the early
1990s, however, relational systems were dominant for all large-scale data processing applications, and they remain
dominant today (2013) except in niche areas. The dominant database language is the standard SQL for the relational
model, which has influenced database languages for other data models.[citation needed]

Object databases were invented in the 1980s to overcome the inconvenience of object-relational impedance
mismatch, which led to the coining of the term "post-relational" but also development of hybrid object-relational
databases.
The next generation of post-relational databases in the 2000s became known as NoSQL databases, introducing fast
key-value stores and document-oriented databases. A competing "next generation" known as NewSQL databases
attempted new implementations that retained the relational/SQL model while aiming to match the high performance
of NoSQL compared to commercially available relational DBMSs.

1960s Navigational DBMS

Basic structure of navigational CODASYL database model.

The introduction of the term database coincided with the
availability of direct-access storage (disks and drums) from
the mid-1960s onwards. The term represented a contrast with
the tape-based systems of the past, allowing shared
interactive use rather than daily batch processing. The Oxford
English dictionary cites a 1962 report by the System
Development Corporation of California as the first to use the
term "data-base" in a specific technical sense.

As computers grew in speed and capability, a number of
general-purpose database systems emerged; by the mid-1960s
there were a number of such systems in commercial use.
Interest in a standard began to grow, and Charles Bachman,
author of one such product, the Integrated Data Store (IDS),
founded the "Database Task Group" within CODASYL, the
group responsible for the creation and standardization of
COBOL. In 1971 they delivered their standard, which
generally became known as the "Codasyl approach", and
soon a number of commercial products based on this
approach were made available.

The Codasyl approach was based on the "manual" navigation
of a linked data set which was formed into a large network.
Records could be found either by use of a primary key
(known as a CALC key, typically implemented by hashing),
by navigating relationships (called sets) from one record to
another, or by scanning all the records in sequential order. Later systems added B-Trees to provide alternate access
paths. Many Codasyl databases also added a query language that was very straightforward. However, in the final
tally, CODASYL was very complex and required significant training and effort to produce useful applications.
IBM also had their own DBMS system in 1968, known as IMS. IMS was a development of software written for the
Apollo program on the System/360. IMS was generally similar in concept to Codasyl, but used a strict hierarchy for

http://en.wikipedia.org/w/index.php?title=Edgar_F._Codd
http://en.wikipedia.org/wiki/Citation_needed
http://en.wikipedia.org/w/index.php?title=Object_database
http://en.wikipedia.org/w/index.php?title=Object-relational_impedance_mismatch
http://en.wikipedia.org/w/index.php?title=Object-relational_impedance_mismatch
http://en.wikipedia.org/w/index.php?title=Key-value_store
http://en.wikipedia.org/w/index.php?title=CODASYL
http://en.wikipedia.org/w/index.php?title=File%3ACodasylB.png
http://en.wikipedia.org/w/index.php?title=Oxford_English_dictionary
http://en.wikipedia.org/w/index.php?title=Oxford_English_dictionary
http://en.wikipedia.org/w/index.php?title=Charles_Bachman
http://en.wikipedia.org/w/index.php?title=Integrated_Data_Store
http://en.wikipedia.org/w/index.php?title=CODASYL
http://en.wikipedia.org/w/index.php?title=COBOL
http://en.wikipedia.org/w/index.php?title=International_Business_Machines
http://en.wikipedia.org/w/index.php?title=Information_Management_System
http://en.wikipedia.org/w/index.php?title=Apollo_program
http://en.wikipedia.org/w/index.php?title=System/360

Database 4

its model of data navigation instead of Codasyl's network model. Both concepts later became known as navigational
databases due to the way data was accessed, and Bachman's 1973 Turing Award presentation was The Programmer
as Navigator. IMS is classified as a hierarchical database. IDMS and Cincom Systems' TOTAL database are
classified as network databases.

1970s relational DBMS
Edgar Codd worked at IBM in San Jose, California, in one of their offshoot offices that was primarily involved in the
development of hard disk systems. He was unhappy with the navigational model of the Codasyl approach, notably
the lack of a "search" facility. In 1970, he wrote a number of papers that outlined a new approach to database
construction that eventually culminated in the groundbreaking A Relational Model of Data for Large Shared Data
Banks.[6]

In this paper, he described a new system for storing and working with large databases. Instead of records being
stored in some sort of linked list of free-form records as in Codasyl, Codd's idea was to use a "table" of fixed-length
records, with each table used for a different type of entity. A linked-list system would be very inefficient when
storing "sparse" databases where some of the data for any one record could be left empty. The relational model
solved this by splitting the data into a series of normalized tables (or relations), with optional elements being moved
out of the main table to where they would take up room only if needed. Data may be freely inserted, deleted and
edited in these tables, with the DBMS doing whatever maintenance needed to present a table view to the
application/user.

In the relational model, related records are linked together with a "key"

The relational model also allowed the
content of the database to evolve without
constant rewriting of links and pointers. The
relational part comes from entities
referencing other entities in what is known
as one-to-many relationship, like a
traditional hierarchical model, and
many-to-many relationship, like a
navigational (network) model. Thus, a
relational model can express both
hierarchical and navigational models, as
well as its native tabular model, allowing for
pure or combined modeling in terms of
these three models, as the application
requires.
For instance, a common use of a database
system is to track information about users,
their name, login information, various
addresses and phone numbers. In the navigational approach all of these data would be placed in a single record, and
unused items would simply not be placed in the database. In the relational approach, the data would be normalized
into a user table, an address table and a phone number table (for instance). Records would be created in these
optional tables only if the address or phone numbers were actually provided.

Linking the information back together is the key to this system. In the relational model, some bit of information was
used as a "key", uniquely defining a particular record. When information was being collected about a user,
information stored in the optional tables would be found by searching for this key. For instance, if the login name of
a user is unique, addresses and phone numbers for that user would be recorded with the login name as its key. This
simple "re-linking" of related data back into a single collection is something that traditional computer languages are

http://en.wikipedia.org/w/index.php?title=Navigational_database
http://en.wikipedia.org/w/index.php?title=Navigational_database
http://en.wikipedia.org/w/index.php?title=Turing_Award
http://en.wikipedia.org/w/index.php?title=Hierarchical_database
http://en.wikipedia.org/w/index.php?title=IDMS
http://en.wikipedia.org/w/index.php?title=Cincom_Systems
http://en.wikipedia.org/w/index.php?title=Cincom_Systems%231970s
http://en.wikipedia.org/w/index.php?title=Network_model
http://en.wikipedia.org/w/index.php?title=Edgar_Codd
http://en.wikipedia.org/w/index.php?title=International_Business_Machines
http://en.wikipedia.org/w/index.php?title=San_Jose%2C_California
http://en.wikipedia.org/w/index.php?title=Hard_disk
http://en.wikipedia.org/w/index.php?title=Linked_list
http://en.wikipedia.org/w/index.php?title=File%3ARelational_key.png
http://en.wikipedia.org/w/index.php?title=Primary_key

Database 5

not designed for.
Just as the navigational approach would require programs to loop in order to collect records, the relational approach
would require loops to collect information about any one record. Codd's solution to the necessary looping was a
set-oriented language, a suggestion that would later spawn the ubiquitous SQL. Using a branch of mathematics
known as tuple calculus, he demonstrated that such a system could support all the operations of normal databases
(inserting, updating etc.) as well as providing a simple system for finding and returning sets of data in a single
operation.
Codd's paper was picked up by two people at Berkeley, Eugene Wong and Michael Stonebraker. They started a
project known as INGRES using funding that had already been allocated for a geographical database project and
student programmers to produce code. Beginning in 1973, INGRES delivered its first test products which were
generally ready for widespread use in 1979. INGRES was similar to System R in a number of ways, including the
use of a "language" for data access, known as QUEL. Over time, INGRES moved to the emerging SQL standard.
IBM itself did one test implementation of the relational model, PRTV, and a production one, Business System 12,
both now discontinued. Honeywell wrote MRDS for Multics, and now there are two new implementations: Alphora
Dataphor and Rel. Most other DBMS implementations usually called relational are actually SQL DBMSs.
In 1970, the University of Michigan began development of the MICRO Information Management System[7] based on
D.L. Childs' Set-Theoretic Data model.[8][9][10] Micro was used to manage very large data sets by the US Department
of Labor, the U.S. Environmental Protection Agency, and researchers from the University of Alberta, the University
of Michigan, and Wayne State University. It ran on IBM mainframe computers using the Michigan Terminal
System.[11] The system remained in production until 1998.

Database machines and appliances
In the 1970s and 1980s attempts were made to build database systems with integrated hardware and software. The
underlying philosophy was that such integration would provide higher performance at lower cost. Examples were
IBM System/38, the early offering of Teradata, and the Britton Lee, Inc. database machine.
Another approach to hardware support for database management was ICL's CAFS accelerator, a hardware disk
controller with programmable search capabilities. In the long term, these efforts were generally unsuccessful because
specialized database machines could not keep pace with the rapid development and progress of general-purpose
computers. Thus most database systems nowadays are software systems running on general-purpose hardware, using
general-purpose computer data storage. However this idea is still pursued for certain applications by some
companies like Netezza and Oracle (Exadata).

Late-1970s SQL DBMS
IBM started working on a prototype system loosely based on Codd's concepts as System R in the early 1970s. The
first version was ready in 1974/5, and work then started on multi-table systems in which the data could be split so
that all of the data for a record (some of which is optional) did not have to be stored in a single large "chunk".
Subsequent multi-user versions were tested by customers in 1978 and 1979, by which time a standardized query
language – SQL[citation needed] – had been added. Codd's ideas were establishing themselves as both workable and
superior to Codasyl, pushing IBM to develop a true production version of System R, known as SQL/DS, and, later,
Database 2 (DB2).
Larry Ellison's Oracle started from a different chain, based on IBM's papers on System R, and beat IBM to market
when the first version was released in 1978.[citation needed]

Stonebraker went on to apply the lessons from INGRES to develop a new database, Postgres, which is now known as
PostgreSQL. PostgreSQL is often used for global mission critical applications (the .org and .info domain name
registries use it as their primary data store, as do many large companies and financial institutions).

http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=Tuple_calculus
http://en.wikipedia.org/w/index.php?title=Eugene_Wong
http://en.wikipedia.org/w/index.php?title=Michael_Stonebraker
http://en.wikipedia.org/w/index.php?title=INGRES
http://en.wikipedia.org/w/index.php?title=IBM_System_R
http://en.wikipedia.org/w/index.php?title=QUEL_query_languages
http://en.wikipedia.org/w/index.php?title=PRTV
http://en.wikipedia.org/w/index.php?title=Business_System_12
http://en.wikipedia.org/w/index.php?title=Honeywell
http://en.wikipedia.org/w/index.php?title=Multics_Relational_Data_Store
http://en.wikipedia.org/w/index.php?title=Multics
http://en.wikipedia.org/w/index.php?title=Dataphor
http://en.wikipedia.org/w/index.php?title=Dataphor
http://en.wikipedia.org/w/index.php?title=Rel_%28DBMS%29
http://en.wikipedia.org/w/index.php?title=MICRO_Information_Management_System
http://en.wikipedia.org/w/index.php?title=US_Department_of_Labor
http://en.wikipedia.org/w/index.php?title=US_Department_of_Labor
http://en.wikipedia.org/w/index.php?title=U.S._Environmental_Protection_Agency
http://en.wikipedia.org/w/index.php?title=University_of_Alberta
http://en.wikipedia.org/w/index.php?title=University_of_Michigan
http://en.wikipedia.org/w/index.php?title=University_of_Michigan
http://en.wikipedia.org/w/index.php?title=Wayne_State_University
http://en.wikipedia.org/w/index.php?title=Michigan_Terminal_System
http://en.wikipedia.org/w/index.php?title=Michigan_Terminal_System
http://en.wikipedia.org/w/index.php?title=System/38
http://en.wikipedia.org/w/index.php?title=Teradata
http://en.wikipedia.org/w/index.php?title=Britton_Lee%2C_Inc.
http://en.wikipedia.org/w/index.php?title=International_Computers_Limited
http://en.wikipedia.org/w/index.php?title=Content_Addressable_File_Store
http://en.wikipedia.org/w/index.php?title=Netezza
http://en.wikipedia.org/w/index.php?title=Oracle_Corporation
http://en.wikipedia.org/w/index.php?title=Exadata
http://en.wikipedia.org/w/index.php?title=IBM_System_R
http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/wiki/Citation_needed
http://en.wikipedia.org/w/index.php?title=IBM_DB2
http://en.wikipedia.org/w/index.php?title=Larry_Ellison
http://en.wikipedia.org/w/index.php?title=Oracle_Database
http://en.wikipedia.org/wiki/Citation_needed
http://en.wikipedia.org/w/index.php?title=PostgreSQL

Database 6

In Sweden, Codd's paper was also read and Mimer SQL was developed from the mid-1970s at Uppsala University.
In 1984, this project was consolidated into an independent enterprise. In the early 1980s, Mimer introduced
transaction handling for high robustness in applications, an idea that was subsequently implemented on most other
DBMS.
Another data model, the entity-relationship model, emerged in 1976 and gained popularity for database design as it
emphasized a more familiar description than the earlier relational model. Later on, entity-relationship constructs
were retrofitted as a data modeling construct for the relational model, and the difference between the two have
become irrelevant.[citation needed]

1980s desktop databases
The 1980s ushered in the age of desktop computing. The new computers empowered their users with spreadsheets
like Lotus 1,2,3 and database software like dBASE. The dBASE product was lightweight and easy for any computer
user to understand out of the box. C. Wayne Ratliff the creator of dBASE stated: “dBASE was different from
programs like BASIC, C, FORTRAN, and COBOL in that a lot of the dirty work had already been done. The data
manipulation is done by dBASE instead of by the user, so the user can concentrate on what he is doing, rather than
having to mess with the dirty details of opening, reading, and closing files, and managing space allocation.“ [12]

dBASE was one of the top selling software titles in the 1980s and early 1990s.

1980s object-oriented databases
The 1980s, along with a rise in object oriented programming, saw a growth in how data in various databases were
handled. Programmers and designers began to treat the data in their databases as objects. That is to say that if a
person's data were in a database, that person's attributes, such as their address, phone number, and age, were now
considered to belong to that person instead of being extraneous data. This allows for relations between data to be
relations to objects and their attributes and not to individual fields.[13] The term "object-relational impedance
mismatch" described the inconvenience of translating between programmed objects and database tables. Object
databases and object-relational databases attempt to solve this problem by providing an object-oriented language
(sometimes as extensions to SQL) that programmers can use as alternative to purely relational SQL. On the
programming side, libraries known as object-relational mappings (ORMs) attempt to solve the same problem.

2000s NoSQL and NewSQL databases
The next generation of post-relational databases in the 2000s became known as NoSQL databases, including fast
key-value stores and document-oriented databases. XML databases are a type of structured document-oriented
database that allows querying based on XML document attributes.
NoSQL databases are often very fast, do not require fixed table schemas, avoid join operations by storing
denormalized data, and are designed to scale horizontally.
In recent years there was a high demand for massively distributed databases with high partition tolerance but
according to the CAP theorem it is impossible for a distributed system to simultaneously provide consistency,
availability and partition tolerance guarantees. A distributed system can satisfy any two of these guarantees at the
same time, but not all three. For that reason many NoSQL databases are using what is called eventual consistency to
provide both availability and partition tolerance guarantees with a maximum level of data consistency.
The most popular NoSQL systems include: MongoDB, Riak, Oracle NoSQL Database, memcached, Redis,
CouchDB, Hazelcast, Apache Cassandra and HBase, note that all are open-source software products.
A number of new relational databases continuing use of SQL but aiming for performance comparable to NoSQL are
known as NewSQL.

http://en.wikipedia.org/w/index.php?title=Mimer_SQL
http://en.wikipedia.org/w/index.php?title=Uppsala_University
http://en.wikipedia.org/w/index.php?title=Entity-relationship_model
http://en.wikipedia.org/w/index.php?title=Database_design
http://en.wikipedia.org/wiki/Citation_needed
http://en.wikipedia.org/w/index.php?title=Desktop_Computer
http://en.wikipedia.org/w/index.php?title=DBASE
http://en.wikipedia.org/w/index.php?title=DBASE
http://en.wikipedia.org/w/index.php?title=C._Wayne_Ratliff
http://en.wikipedia.org/w/index.php?title=DBASE
http://en.wikipedia.org/w/index.php?title=Object_oriented_programming
http://en.wikipedia.org/w/index.php?title=Object-relational_impedance_mismatch
http://en.wikipedia.org/w/index.php?title=Object-relational_impedance_mismatch
http://en.wikipedia.org/w/index.php?title=Object_database
http://en.wikipedia.org/w/index.php?title=Object_database
http://en.wikipedia.org/w/index.php?title=Object-relational_mapping
http://en.wikipedia.org/w/index.php?title=Key-value_store
http://en.wikipedia.org/w/index.php?title=XML_databases
http://en.wikipedia.org/w/index.php?title=XML
http://en.wikipedia.org/w/index.php?title=Denormalization
http://en.wikipedia.org/w/index.php?title=Horizontal_scaling
http://en.wikipedia.org/w/index.php?title=CAP_theorem
http://en.wikipedia.org/w/index.php?title=Distributed_computing
http://en.wikipedia.org/w/index.php?title=Consistency_model
http://en.wikipedia.org/w/index.php?title=Availability
http://en.wikipedia.org/w/index.php?title=Partition_tolerance
http://en.wikipedia.org/w/index.php?title=Eventual_consistency
http://en.wikipedia.org/w/index.php?title=MongoDB
http://en.wikipedia.org/w/index.php?title=Riak
http://en.wikipedia.org/w/index.php?title=Oracle_NoSQL_Database
http://en.wikipedia.org/w/index.php?title=Memcached
http://en.wikipedia.org/w/index.php?title=Redis
http://en.wikipedia.org/w/index.php?title=CouchDB
http://en.wikipedia.org/w/index.php?title=Hazelcast
http://en.wikipedia.org/w/index.php?title=Apache_Cassandra
http://en.wikipedia.org/w/index.php?title=HBase
http://en.wikipedia.org/w/index.php?title=Open-source_software

Database 7

Database research
Database technology has been an active research topic since the 1960s, both in academia and in the research and
development groups of companies (for example IBM Research). Research activity includes theory and development
of prototypes. Notable research topics have included models, the atomic transaction concept and related concurrency
control techniques, query languages and query optimization methods, RAID, and more.
The database research area has several dedicated academic journals (for example, ACM Transactions on Database
Systems-TODS, Data and Knowledge Engineering-DKE) and annual conferences (e.g., ACM SIGMOD, ACM
PODS, VLDB, IEEE ICDE).

Database type examples
One way to classify databases involves the type of their contents, for example: bibliographic, document-text,
statistical, or multimedia objects. Another way is by their application area, for example: accounting, music
compositions, movies, banking, manufacturing, or insurance. A third way is by some technical aspect, such as the
database structure or interface type. This section lists a few of the adjectives used to characterize different kinds of
databases.
• An in-memory database is a database that primarily resides in main memory, but is typically backed-up by

non-volatile computer data storage. Main memory databases are faster than disk databases, and so are often used
where response time is critical, such as in telecommunications network equipment.SAP HANA platform is a very
hot topic for in-memory database. By May 2012, HANA was able to run on servers with 100TB main memory
powered by IBM. The co founder of the company claimed that the system was big enough to run the 8 largest
SAP customers.

• An active database includes an event-driven architecture which can respond to conditions both inside and outside
the database. Possible uses include security monitoring, alerting, statistics gathering and authorization. Many
databases provide active database features in the form of database triggers.

• A cloud database relies on cloud technology. Both the database and most of its DBMS reside remotely, "in the
cloud," while its applications are both developed by programmers and later maintained and utilized by
(application's) end-users through a web browser and Open APIs.

• Data warehouses archive data from operational databases and often from external sources such as market research
firms. The warehouse becomes the central source of data for use by managers and other end-users who may not
have access to operational data. For example, sales data might be aggregated to weekly totals and converted from
internal product codes to use UPCs so that they can be compared with ACNielsen data. Some basic and essential
components of data warehousing include retrieving, analyzing, and mining data, transforming, loading and
managing data so as to make them available for further use.

• A deductive database combines logic programming with a relational database, for example by using the Datalog
language.

• A distributed database is one in which both the data and the DBMS span multiple computers.
• A document-oriented database is designed for storing, retrieving, and managing document-oriented, or semi

structured data, information. Document-oriented databases are one of the main categories of NoSQL databases.
• An embedded database system is a DBMS which is tightly integrated with an application software that requires

access to stored data in such a way that the DBMS is hidden from the application’s end-users and requires little or
no ongoing maintenance.[14]

• End-user databases consist of data developed by individual end-users. Examples of these are collections of
documents, spreadsheets, presentations, multimedia, and other files. Several products exist to support such
databases. Some of them are much simpler than full fledged DBMSs, with more elementary DBMS functionality.

http://en.wikipedia.org/w/index.php?title=Academia
http://en.wikipedia.org/w/index.php?title=IBM_Research
http://en.wikipedia.org/w/index.php?title=Database_theory
http://en.wikipedia.org/w/index.php?title=Prototype
http://en.wikipedia.org/w/index.php?title=Data_model
http://en.wikipedia.org/w/index.php?title=RAID
http://en.wikipedia.org/w/index.php?title=Academic_journal
http://en.wikipedia.org/w/index.php?title=ACM_Transactions_on_Database_Systems
http://en.wikipedia.org/w/index.php?title=ACM_Transactions_on_Database_Systems
http://en.wikipedia.org/w/index.php?title=Data_and_Knowledge_Engineering
http://en.wikipedia.org/w/index.php?title=Academic_conference
http://en.wikipedia.org/w/index.php?title=Association_for_Computing_Machinery
http://en.wikipedia.org/w/index.php?title=SIGMOD
http://en.wikipedia.org/w/index.php?title=Symposium_on_Principles_of_Database_Systems
http://en.wikipedia.org/w/index.php?title=VLDB
http://en.wikipedia.org/w/index.php?title=IEEE
http://en.wikipedia.org/w/index.php?title=Bibliographic_database
http://en.wikipedia.org/w/index.php?title=In-memory_database
http://en.wikipedia.org/w/index.php?title=Main_memory
http://en.wikipedia.org/w/index.php?title=SAP_HANA
http://en.wikipedia.org/w/index.php?title=Active_database
http://en.wikipedia.org/w/index.php?title=Cloud_database
http://en.wikipedia.org/w/index.php?title=Cloud_computing
http://en.wikipedia.org/w/index.php?title=Web_browser
http://en.wikipedia.org/w/index.php?title=Open_API
http://en.wikipedia.org/w/index.php?title=Data_warehouse
http://en.wikipedia.org/w/index.php?title=Universal_Product_Code
http://en.wikipedia.org/w/index.php?title=ACNielsen
http://en.wikipedia.org/w/index.php?title=Data_mining
http://en.wikipedia.org/w/index.php?title=Deductive_database
http://en.wikipedia.org/w/index.php?title=Logic_programming
http://en.wikipedia.org/w/index.php?title=Datalog
http://en.wikipedia.org/w/index.php?title=Embedded_database
http://en.wikipedia.org/w/index.php?title=Application_software

Database 8

• A federated database system comprises several distinct databases, each with its own DBMS. It is handled as a
single database by a federated database management system (FDBMS), which transparently integrates multiple
autonomous DBMSs, possibly of different types (in which case it would also be a heterogeneous database
system), and provides them with an integrated conceptual view.

• Sometimes the term multi-database is used as a synonym to federated database, though it may refer to a less
integrated (e.g., without an FDBMS and a managed integrated schema) group of databases that cooperate in a
single application. In this case typically middleware is used for distribution, which typically includes an atomic
commit protocol (ACP), e.g., the two-phase commit protocol, to allow distributed (global) transactions across the
participating databases.

• A graph database is a kind of NoSQL database that uses graph structures with nodes, edges, and properties to
represent and store information. General graph databases that can store any graph are distinct from specialized
graph databases such as triplestores and network databases.

• In a hypertext or hypermedia database, any word or a piece of text representing an object, e.g., another piece of
text, an article, a picture, or a film, can be hyperlinked to that object. Hypertext databases are particularly useful
for organizing large amounts of disparate information. For example, they are useful for organizing online
encyclopedias, where users can conveniently jump around the text. The World Wide Web is thus a large
distributed hypertext database.

• A knowledge base (abbreviated KB, kb or Δ[15]) is a special kind of database for knowledge management,
providing the means for the computerized collection, organization, and retrieval of knowledge. Also a collection
of data representing problems with their solutions and related experiences.

• A mobile database can be carried on or synchronized from a mobile computing device.
• Operational databases store detailed data about the operations of an organization. They typically process

relatively high volumes of updates using transactions. Examples include customer databases that record contact,
credit, and demographic information about a business' customers, personnel databases that hold information such
as salary, benefits, skills data about employees, enterprise resource planning systems that record details about
product components, parts inventory, and financial databases that keep track of the organization's money,
accounting and financial dealings.

• A parallel database seeks to improve performance through parallelization for tasks such as loading data, building
indexes and evaluating queries.

The major parallel DBMS architectures which are induced by the underlying hardware architecture are:
• Shared memory architecture, where multiple processors share the main memory space, as well as other

data storage.
• Shared disk architecture, where each processing unit (typically consisting of multiple processors) has its

own main memory, but all units share the other storage.
• Shared nothing architecture, where each processing unit has its own main memory and other storage.

• Probabilistic databases employ fuzzy logic to draw inferences from imprecise data.
• Real-time databases process transactions fast enough for the result to come back and be acted on right away.
• A spatial database can store the data with multidimensional features. The queries on such data include location

based queries, like "Where is the closest hotel in my area?".
• A temporal database has built-in time aspects, for example a temporal data model and a temporal version of SQL.

More specifically the temporal aspects usually include valid-time and transaction-time.
• A terminology-oriented database builds upon an object-oriented database, often customized for a specific field.
• An unstructured data database is intended to store in a manageable and protected way diverse objects that do not

fit naturally and conveniently in common databases. It may include email messages, documents, journals,

http://en.wikipedia.org/w/index.php?title=Heterogeneous_database_system
http://en.wikipedia.org/w/index.php?title=Heterogeneous_database_system
http://en.wikipedia.org/w/index.php?title=Middleware_%28distributed_applications%29
http://en.wikipedia.org/w/index.php?title=Two-phase_commit_protocol
http://en.wikipedia.org/w/index.php?title=Distributed_transaction
http://en.wikipedia.org/w/index.php?title=Graph_%28data_structure%29
http://en.wikipedia.org/w/index.php?title=Triplestore
http://en.wikipedia.org/w/index.php?title=Network_database_model
http://en.wikipedia.org/w/index.php?title=Hypertext
http://en.wikipedia.org/w/index.php?title=Hypermedia
http://en.wikipedia.org/w/index.php?title=Hyperlink
http://en.wikipedia.org/w/index.php?title=Online_encyclopedia
http://en.wikipedia.org/w/index.php?title=Online_encyclopedia
http://en.wikipedia.org/w/index.php?title=World_Wide_Web
http://en.wikipedia.org/w/index.php?title=Knowledge_base
http://en.wikipedia.org/w/index.php?title=Knowledge_management
http://en.wikipedia.org/w/index.php?title=Information_retrieval
http://en.wikipedia.org/w/index.php?title=Knowledge
http://en.wikipedia.org/w/index.php?title=Mobile_database
http://en.wikipedia.org/w/index.php?title=Mobile_computing_device
http://en.wikipedia.org/w/index.php?title=Operational_database
http://en.wikipedia.org/w/index.php?title=Transaction_%28database%29
http://en.wikipedia.org/w/index.php?title=Customer_relationship_management
http://en.wikipedia.org/w/index.php?title=Parallel_database
http://en.wikipedia.org/w/index.php?title=Parallel_computing
http://en.wikipedia.org/w/index.php?title=Computer_hardware
http://en.wikipedia.org/w/index.php?title=Shared_memory%23In_hardware
http://en.wikipedia.org/w/index.php?title=Shared_nothing_architecture
http://en.wikipedia.org/w/index.php?title=Probabilistic_database
http://en.wikipedia.org/w/index.php?title=Fuzzy_logic
http://en.wikipedia.org/w/index.php?title=Real-time_database
http://en.wikipedia.org/w/index.php?title=Spatial_database
http://en.wikipedia.org/w/index.php?title=Temporal_database
http://en.wikipedia.org/w/index.php?title=Terminology-oriented_database
http://en.wikipedia.org/w/index.php?title=Object-oriented_database
http://en.wikipedia.org/w/index.php?title=Unstructured_data

Database 9

multimedia objects, etc. The name may be misleading since some objects can be highly structured. However, the
entire possible object collection does not fit into a predefined structured framework. Most established DBMSs
now support unstructured data in various ways, and new dedicated DBMSs are emerging.

Database design and modeling
The first task of a database designer is to produce a conceptual data model that reflects the structure of the
information to be held in the database. A common approach to this is to develop an entity-relationship model, often
with the aid of drawing tools. Another popular approach is the Unified Modeling Language. A successful data model
will accurately reflect the possible state of the external world being modeled: for example, if people can have more
than one phone number, it will allow this information to be captured. Designing a good conceptual data model
requires a good understanding of the application domain; it typically involves asking deep questions about the things
of interest to an organisation, like "can a customer also be a supplier?", or "if a product is sold with two different
forms of packaging, are those the same product or different products?", or "if a plane flies from New York to Dubai
via Frankfurt, is that one flight or two (or maybe even three)?". The answers to these questions establish definitions
of the terminology used for entities (customers, products, flights, flight segments) and their relationships and
attributes.
Producing the conceptual data model sometimes involves input from business processes, or the analysis of workflow
in the organization. This can help to establish what information is needed in the database, and what can be left out.
For example, it can help when deciding whether the database needs to hold historic data as well as current data.
Having produced a conceptual data model that users are happy with, the next stage is to translate this into a schema
that implements the relevant data structures within the database. This process is often called logical database design,
and the output is a logical data model expressed in the form of a schema. Whereas the conceptual data model is (in
theory at least) independent of the choice of database technology, the logical data model will be expressed in terms
of a particular database model supported by the chosen DBMS. (The terms data model and database model are often
used interchangeably, but in this article we use data model for the design of a specific database, and database model
for the modelling notation used to express that design.)
The most popular database model for general-purpose databases is the relational model, or more precisely, the
relational model as represented by the SQL language. The process of creating a logical database design using this
model uses a methodical approach known as normalization. The goal of normalization is to ensure that each
elementary "fact" is only recorded in one place, so that insertions, updates, and deletions automatically maintain
consistency.
The final stage of database design is to make the decisions that affect performance, scalability, recovery, security,
and the like. This is often called physical database design. A key goal during this stage is data independence,
meaning that the decisions made for performance optimization purposes should be invisible to end-users and
applications. Physical design is driven mainly by performance requirements, and requires a good knowledge of the
expected workload and access patterns, and a deep understanding of the features offered by the chosen DBMS.
Another aspect of physical database design is security. It involves both defining access control to database objects as
well as defining security levels and methods for the data itself.

http://en.wikipedia.org/w/index.php?title=Conceptual_data_model
http://en.wikipedia.org/w/index.php?title=Entity-relationship_model
http://en.wikipedia.org/w/index.php?title=Unified_Modeling_Language
http://en.wikipedia.org/w/index.php?title=Business_process_modeling
http://en.wikipedia.org/w/index.php?title=Workflow
http://en.wikipedia.org/w/index.php?title=Database_schema
http://en.wikipedia.org/w/index.php?title=Logical_data_model
http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=Data_independence
http://en.wikipedia.org/w/index.php?title=Access_control

Database 10

Database models

Collage of five types of database models.

A database model is a type of data
model that determines the logical
structure of a database and
fundamentally determines in which
manner data can be stored, organized,
and manipulated. The most popular
example of a database model is the
relational model (or the SQL
approximation of relational), which
uses a table-based format.

Common logical data models for
databases include:

•• Hierarchical database model
•• Network model
•• Relational model
• Entity–relationship model

• Enhanced entity–relationship model
•• Object model
•• Document model
• Entity–attribute–value model
•• Star schema
An object-relational database combines the two related structures.
Physical data models include:
•• Inverted index
•• Flat file
Other models include:
•• Associative model
•• Multidimensional model
•• Multivalue model
•• Semantic model
•• XML database
•• Named graph

http://en.wikipedia.org/w/index.php?title=File%3ADatabase_models.jpg
http://en.wikipedia.org/w/index.php?title=Data_model
http://en.wikipedia.org/w/index.php?title=Data_model
http://en.wikipedia.org/w/index.php?title=Data
http://en.wikipedia.org/w/index.php?title=Logical_data_model
http://en.wikipedia.org/w/index.php?title=Hierarchical_database_model
http://en.wikipedia.org/w/index.php?title=Network_model
http://en.wikipedia.org/w/index.php?title=Entity%E2%80%93relationship_model
http://en.wikipedia.org/w/index.php?title=Enhanced_entity%E2%80%93relationship_model
http://en.wikipedia.org/w/index.php?title=Object_database
http://en.wikipedia.org/w/index.php?title=Entity%E2%80%93attribute%E2%80%93value_model
http://en.wikipedia.org/w/index.php?title=Star_schema
http://en.wikipedia.org/w/index.php?title=Physical_data_model
http://en.wikipedia.org/w/index.php?title=Inverted_index
http://en.wikipedia.org/w/index.php?title=Flat_file_database
http://en.wikipedia.org/w/index.php?title=Associative_model_of_data
http://en.wikipedia.org/w/index.php?title=Multidimensional_database
http://en.wikipedia.org/w/index.php?title=Multivalue_model
http://en.wikipedia.org/w/index.php?title=Semantic_data_model
http://en.wikipedia.org/w/index.php?title=XML_database
http://en.wikipedia.org/w/index.php?title=Named_graph

Database 11

External, conceptual, and internal views

Traditional view of data[16]

A database management system
provides three views of the database
data:
• The external level defines how each

group of end-users sees the
organization of data in the database.
A single database can have any
number of views at the external
level.

• The conceptual level unifies the
various external views into a
compatible global view. It provides
the synthesis of all the external
views. It is out of the scope of the
various database end-users, and is
rather of interest to database
application developers and database administrators.

• The internal level (or physical level) is the internal organization of data inside a DBMS (see Implementation
section below). It is concerned with cost, performance, scalability and other operational matters. It deals with
storage layout of the data, using storage structures such as indexes to enhance performance. Occasionally it stores
data of individual views (materialized views), computed from generic data, if performance justification exists for
such redundancy. It balances all the external views' performance requirements, possibly conflicting, in an attempt
to optimize overall performance across all activities.

While there is typically only one conceptual (or logical) and physical (or internal) view of the data, there can be any
number of different external views. This allows users to see database information in a more business-related way
rather than from a technical, processing viewpoint. For example, a financial department of a company needs the
payment details of all employees as part of the company's expenses, but does not need details about employees that
are the interest of the human resources department. Thus different departments need different views of the company's
database.
The three-level database architecture relates to the concept of data independence which was one of the major initial
driving forces of the relational model. The idea is that changes made at a certain level do not affect the view at a
higher level. For example, changes in the internal level do not affect application programs written using conceptual
level interfaces, which reduces the impact of making physical changes to improve performance.
The conceptual view provides a level of indirection between internal and external. On one hand it provides a
common view of the database, independent of different external view structures, and on the other hand it abstracts
away details of how the data is stored or managed (internal level). In principle every level, and even every external
view, can be presented by a different data model. In practice usually a given DBMS uses the same data model for
both the external and the conceptual levels (e.g., relational model). The internal level, which is hidden inside the
DBMS and depends on its implementation (see Implementation section below), requires a different level of detail
and uses its own types of data structure types.
Separating the external, conceptual and internal levels was a major feature of the relational database model
implementations that dominate 21st century databases.

http://en.wikipedia.org/w/index.php?title=File%3AA2_2_Traditional_View_of_Data.jpg
http://en.wikipedia.org/w/index.php?title=Index_%28database%29
http://en.wikipedia.org/w/index.php?title=Materialized_view
http://en.wikipedia.org/w/index.php?title=Human_resources
http://en.wikipedia.org/w/index.php?title=Data_independence

Database 12

Database languages
Database languages are special-purpose languages, which do one or more of the following:
• Data definition language - defines data types and the relationships among them
• Data manipulation language - performs tasks such as inserting, updating, or deleting data occurrences
• Query language - allows searching for information and computing derived information
Database languages are specific to a particular data model. Notable examples include:
• SQL combines the roles of data definition, data manipulation, and query in a single language. It was one of the

first commercial languages for the relational model, although it departs in some respects from the relational model
as described by Codd (for example, the rows and columns of a table can be ordered). SQL became a standard of
the American National Standards Institute (ANSI) in 1986, and of the International Organization for Standards
(ISO) in 1987. The standards have been regularly enhanced since and is supported (with varying degrees of
conformance) by all mainstream commercial relational DBMSs.

• OQL is an object model language standard (from the Object Data Management Group). It has influenced the
design of some of the newer query languages like JDOQL and EJB QL.

• XQuery is a standard XML query language implemented by XML database systems such as MarkLogic and
eXist, by relational databases with XML capability such as Oracle and DB2, and also by in-memory XML
processors such as Saxon.

• SQL/XML combines XQuery with SQL.
A database language may also incorporate features like:
•• DBMS-specific Configuration and storage engine management
•• Computations to modify query results, like counting, summing, averaging, sorting, grouping, and

cross-referencing
•• Constraint enforcement (e.g. in an automotive database, only allowing one engine type per car)
• Application programming interface version of the query language, for programmer convenience

Performance, security, and availability
Because of the critical importance of database technology to the smooth running of an enterprise, database systems
include complex mechanisms to deliver the required performance, security, and availability, and allow database
administrators to control the use of these features.

Database storage
Database storage is the container of the physical materialization of a database. It comprises the internal (physical)
level in the database architecture. It also contains all the information needed (e.g., metadata, "data about the data",
and internal data structures) to reconstruct the conceptual level and external level from the internal level when
needed. Putting data into permanent storage is generally the responsibility of the database engine a.k.a. "storage
engine". Though typically accessed by a DBMS through the underlying operating system (and often utilizing the
operating systems' file systems as intermediates for storage layout), storage properties and configuration setting are
extremely important for the efficient operation of the DBMS, and thus are closely maintained by database
administrators. A DBMS, while in operation, always has its database residing in several types of storage (e.g.,
memory and external storage). The database data and the additional needed information, possibly in very large
amounts, are coded into bits. Data typically reside in the storage in structures that look completely different from the
way the data look in the conceptual and external levels, but in ways that attempt to optimize (the best possible) these
levels' reconstruction when needed by users and programs, as well as for computing additional types of needed
information from the data (e.g., when querying the database).

http://en.wikipedia.org/w/index.php?title=Data_definition_language
http://en.wikipedia.org/w/index.php?title=Data_manipulation_language
http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=Codd%27s_12_rules
http://en.wikipedia.org/w/index.php?title=Codd%27s_12_rules
http://en.wikipedia.org/w/index.php?title=Technical_standard
http://en.wikipedia.org/w/index.php?title=American_National_Standards_Institute
http://en.wikipedia.org/w/index.php?title=International_Organization_for_Standards
http://en.wikipedia.org/w/index.php?title=OQL
http://en.wikipedia.org/w/index.php?title=Object_database
http://en.wikipedia.org/w/index.php?title=Object_Data_Management_Group
http://en.wikipedia.org/w/index.php?title=JDOQL
http://en.wikipedia.org/w/index.php?title=EJB_QL
http://en.wikipedia.org/w/index.php?title=XQuery
http://en.wikipedia.org/w/index.php?title=XML
http://en.wikipedia.org/w/index.php?title=XML_database
http://en.wikipedia.org/w/index.php?title=MarkLogic
http://en.wikipedia.org/w/index.php?title=EXist
http://en.wikipedia.org/w/index.php?title=Oracle_Database
http://en.wikipedia.org/w/index.php?title=IBM_DB2
http://en.wikipedia.org/w/index.php?title=Saxon_XSLT
http://en.wikipedia.org/w/index.php?title=SQL/XML
http://en.wikipedia.org/w/index.php?title=XQuery
http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=Application_programming_interface
http://en.wikipedia.org/w/index.php?title=Metadata
http://en.wikipedia.org/w/index.php?title=Data_structure
http://en.wikipedia.org/w/index.php?title=Database_engine
http://en.wikipedia.org/w/index.php?title=Operating_system
http://en.wikipedia.org/w/index.php?title=File_system

Database 13

Some DBMS support specifying which character encoding was used to store data, so multiple encodings can be used
in the same database.
Various low-level database storage structures are used by the storage engine to serialize the data model so it can be
written to the medium of choice. Techniques such as indexing may be used to improve performance. Conventional
storage is row-oriented, but there are also column-oriented and correlation databases.

Database materialized views

Often storage redundancy is employed to increase performance. A common example is storing materialized views,
which consist of frequently needed external views or query results. Storing such views saves the expensive
computing of them each time they are needed. The downsides of materialized views are the overhead incurred when
updating them to keep them synchronized with their original updated database data, and the cost of storage
redundancy.

Database and database object replication

Occasionally a database employs storage redundancy by database objects replication (with one or more copies) to
increase data availability (both to improve performance of simultaneous multiple end-user accesses to a same
database object, and to provide resiliency in a case of partial failure of a distributed database). Updates of a
replicated object need to be synchronized across the object copies. In many cases the entire database is replicated.

Database security
Database security deals with all various aspects of protecting the database content, its owners, and its users. It ranges
from protection from intentional unauthorized database uses to unintentional database accesses by unauthorized
entities (e.g., a person or a computer program).
Database access control deals with controlling who (a person or a certain computer program) is allowed to access
what information in the database. The information may comprise specific database objects (e.g., record types,
specific records, data structures), certain computations over certain objects (e.g., query types, or specific queries), or
utilizing specific access paths to the former (e.g., using specific indexes or other data structures to access
information). Database access controls are set by special authorized (by the database owner) personnel that uses
dedicated protected security DBMS interfaces.
This may be managed directly on an individual basis, or by the assignment of individuals and privileges to groups, or
(in the most elaborate models) through the assignment of individuals and groups to roles which are then granted
entitlements. Data security prevents unauthorized users from viewing or updating the database. Using passwords,
users are allowed access to the entire database or subsets of it called "subschemas". For example, an employee
database can contain all the data about an individual employee, but one group of users may be authorized to view
only payroll data, while others are allowed access to only work history and medical data. If the DBMS provides a
way to interactively enter and update the database, as well as interrogate it, this capability allows for managing
personal databases.
Data security in general deals with protecting specific chunks of data, both physically (i.e., from corruption, or
destruction, or removal; e.g., see physical security), or the interpretation of them, or parts of them to meaningful
information (e.g., by looking at the strings of bits that they comprise, concluding specific valid credit-card numbers;
e.g., see data encryption).
Change and access logging records who accessed which attributes, what was changed, and when it was changed.
Logging services allow for a forensic database audit later by keeping a record of access occurrences and changes.
Sometimes application-level code is used to record changes rather than leaving this to the database. Monitoring can
be set up to attempt to detect security breaches.

http://en.wikipedia.org/w/index.php?title=Character_encoding
http://en.wikipedia.org/w/index.php?title=Index_%28database%29
http://en.wikipedia.org/w/index.php?title=Column-oriented_DBMS
http://en.wikipedia.org/w/index.php?title=Correlation_database
http://en.wikipedia.org/w/index.php?title=Materialized_view
http://en.wikipedia.org/w/index.php?title=Database_security
http://en.wikipedia.org/w/index.php?title=Access_control
http://en.wikipedia.org/w/index.php?title=Privilege_%28Computing%29
http://en.wikipedia.org/w/index.php?title=Data_security
http://en.wikipedia.org/w/index.php?title=Physical_security
http://en.wikipedia.org/w/index.php?title=Data_encryption
http://en.wikipedia.org/w/index.php?title=Database_audit

Database 14

Transactions and concurrency
Database transactions can be used to introduce some level of fault tolerance and data integrity after recovery from a
crash. A database transaction is a unit of work, typically encapsulating a number of operations over a database (e.g.,
reading a database object, writing, acquiring lock, etc.), an abstraction supported in database and also other systems.
Each transaction has well defined boundaries in terms of which program/code executions are included in that
transaction (determined by the transaction's programmer via special transaction commands).
The acronym ACID describes some ideal properties of a database transaction: Atomicity, Consistency, Isolation, and
Durability.

Migration
See also section Database migration in article Data migration

A database built with one DBMS is not portable to another DBMS (i.e., the other DBMS cannot run it). However, in
some situations it is desirable to move, migrate a database from one DBMS to another. The reasons are primarily
economical (different DBMSs may have different total costs of ownership or TCOs), functional, and operational
(different DBMSs may have different capabilities). The migration involves the database's transformation from one
DBMS type to another. The transformation should maintain (if possible) the database related application (i.e., all
related application programs) intact. Thus, the database's conceptual and external architectural levels should be
maintained in the transformation. It may be desired that also some aspects of the architecture internal level are
maintained. A complex or large database migration may be a complicated and costly (one-time) project by itself,
which should be factored into the decision to migrate. This in spite of the fact that tools may exist to help migration
between specific DBMS. Typically a DBMS vendor provides tools to help importing databases from other popular
DBMSs.

Database building, maintaining, and tuning
After designing a database for an application arrives the stage of building the database. Typically an appropriate
general-purpose DBMS can be selected to be utilized for this purpose. A DBMS provides the needed user interfaces
to be utilized by database administrators to define the needed application's data structures within the DBMS's
respective data model. Other user interfaces are used to select needed DBMS parameters (like security related,
storage allocation parameters, etc.).
When the database is ready (all its data structures and other needed components are defined) it is typically populated
with initial application's data (database initialization, which is typically a distinct project; in many cases using
specialized DBMS interfaces that support bulk insertion) before making it operational. In some cases the database
becomes operational while empty from application's data, and data are accumulated along its operation.
After completing building the database and making it operational arrives the database maintenance stage: Various
database parameters may need changes and tuning for better performance, application's data structures may be
changed or added, new related application programs may be written to add to the application's functionality, etc.
Contribution by Malebye Joyce as adapted from informations systems for businesses from chapter 5 - storing ad
organizing data. Databases are often confused with spread sheet such as Microsoft excel which is different from
Microsoft access. Both can be used to store information,however a database serves a better function at this. Below is
a comparison of spreadsheets and databases. Spread sheets strengths -1. Very simple data storage 2. Relatively easy
to use 3. Require less planning Weaknesses- 1. Data integrity problems, include inaccurate,inconsistent and out of
date version and out of date data. 2. Formulas could be incorrect Databases strengths 1. Methods for keeping data up
to date and consistent 2. Data is of higher quality than data stored in spreadsheets 3. Good for storing and organizing
information. Weakness 1. Require more planning and designing

http://en.wikipedia.org/w/index.php?title=Database_transactions
http://en.wikipedia.org/w/index.php?title=Fault_tolerance
http://en.wikipedia.org/w/index.php?title=Data_integrity
http://en.wikipedia.org/w/index.php?title=Crash_%28computing%29
http://en.wikipedia.org/w/index.php?title=Lock_%28database%29
http://en.wikipedia.org/w/index.php?title=Atomicity_%28database_systems%29
http://en.wikipedia.org/w/index.php?title=Consistency_%28database_systems%29
http://en.wikipedia.org/w/index.php?title=Isolation_%28database_systems%29
http://en.wikipedia.org/w/index.php?title=Durability_%28database_systems%29
http://en.wikipedia.org/w/index.php?title=Data_migration%23Database_migration
http://en.wikipedia.org/w/index.php?title=Data_migration
http://en.wikipedia.org/w/index.php?title=Software_portability
http://en.wikipedia.org/w/index.php?title=Total_cost_of_ownership
http://en.wikipedia.org/w/index.php?title=General-purpose_DBMS
http://en.wikipedia.org/w/index.php?title=User_interface
http://en.wikipedia.org/w/index.php?title=Database_tuning

Database 15

Backup and restore
Sometimes it is desired to bring a database back to a previous state (for many reasons, e.g., cases when the database
is found corrupted due to a software error, or if it has been updated with erroneous data). To achieve this a backup
operation is done occasionally or continuously, where each desired database state (i.e., the values of its data and their
embedding in database's data structures) is kept within dedicated backup files (many techniques exist to do this
effectively). When this state is needed, i.e., when it is decided by a database administrator to bring the database back
to this state (e.g., by specifying this state by a desired point in time when the database was in this state), these files
are utilized to restore that state.

Other
Other DBMS features might include:
• Database logs
• Graphics component for producing graphs and charts, especially in a data warehouse system
• Query optimizer - Performs query optimization on every query to choose for it the most efficient query plan (a

partial order (tree) of operations) to be executed to compute the query result. May be specific to a particular
storage engine.

•• Tools or hooks for database design, application programming, application program maintenance, database
performance analysis and monitoring, database configuration monitoring, DBMS hardware configuration (a
DBMS and related database may span computers, networks, and storage units) and related database mapping
(especially for a distributed DBMS), storage allocation and database layout monitoring, storage migration, etc.

References
[1] Jeffrey Ullman 1997: First course in database systems, Prentice-Hall Inc., Simon & Schuster, Page 1, ISBN 0-13-861337-0.
[2] Tsitchizris, D. C. and F. H. Lochovsky (1982). Data Models. Englewood-Cliffs, Prentice-Hall.
[3] Beynon-Davies P. (2004). Database Systems 3rd Edition. Palgrave, Basingstoke, UK. ISBN 1-4039-1601-2
[4][4] . This article quotes a development time of 5 years involving 750 people for DB2 release 9 alone
[5][5] (Turing Award Lecture 1973)
[6] Codd, E.F. (1970). "A Relational Model of Data for Large Shared Data Banks" (http:/ / www. seas. upenn. edu/ ~zives/ 03f/ cis550/ codd.

pdf). In: Communications of the ACM 13 (6): 377–387.
[7] William Hershey and Carol Easthope, "A set theoretic data structure and retrieval language" (https:/ / docs. google. com/

open?id=0B4t_NX-QeWDYNmVhYjAwMWMtYzc3ZS00YjI0LWJhMjgtZTYyODZmNmFkNThh), Spring Joint Computer Conference,
May 1972 in ACM SIGIR Forum, Volume 7, Issue 4 (December 1972), pp. 45-55, DOI= 10.1145/1095495.1095500 (http:/ / doi. acm. org/ 10.
1145/ 1095495. 1095500)

[8] Ken North, "Sets, Data Models and Data Independence" (http:/ / drdobbs. com/ blogs/ database/ 228700616), Dr. Dobb's, 10 March 2010
[9] Description of a set-theoretic data structure (http:/ / hdl. handle. net/ 2027. 42/ 4163), D. L. Childs, 1968, Technical Report 3 of the

CONCOMP (Research in Conversational Use of Computers) Project, University of Michigan, Ann Arbor, Michigan, USA
[10] Feasibility of a Set-Theoretic Data Structure : A General Structure Based on a Reconstituted Definition of Relation (http:/ / hdl. handle. net/

2027. 42/ 4164), D. L. Childs, 1968, Technical Report 6 of the CONCOMP (Research in Conversational Use of Computers) Project,
University of Michigan, Ann Arbor, Michigan, USA

[11] MICRO Information Management System (Version 5.0) Reference Manual (http:/ / docs. google. com/ viewer?a=v& pid=explorer&
chrome=true& srcid=0B4t_NX-QeWDYZGMwOTRmOTItZTg2Zi00YmJkLTg4MTktN2E4MWU0YmZlMjE3), M.A. Kahn, D.L.
Rumelhart, and B.L. Bronson, October 1977, Institute of Labor and Industrial Relations (ILIR), University of Michigan and Wayne State
University

[12] Interview with Wayne Ratliff (http:/ / www. foxprohistory. org/ interview_wayne_ratliff. htm). The FoxPro History. Retrieved on
2013-07-12.

[13] Development of an object-oriented DBMS; Portland, Oregon, United States; Pages: 472 – 482; 1986; ISBN 0-89791-204-7
[14] Graves, Steve. "COTS Databases For Embedded Systems" (http:/ / www. embedded-computing. com/ articles/ id/ ?2020), Embedded

Computing Design magazine, January 2007. Retrieved on August 13, 2008.
[15][15] Argumentation in Artificial Intelligence by Iyad Rahwan, Guillermo R. Simari
[16] itl.nist.gov (1993) Integration Definition for Information Modeling (IDEFIX) (http:/ / www. itl. nist. gov/ fipspubs/ idef1x. doc). 21

December 1993.

http://en.wikipedia.org/w/index.php?title=Database_log
http://en.wikipedia.org/w/index.php?title=Data_warehouse
http://en.wikipedia.org/w/index.php?title=Query_optimizer
http://en.wikipedia.org/w/index.php?title=Jeffrey_Ullman
http://www.seas.upenn.edu/~zives/03f/cis550/codd.pdf
http://www.seas.upenn.edu/~zives/03f/cis550/codd.pdf
https://docs.google.com/open?id=0B4t_NX-QeWDYNmVhYjAwMWMtYzc3ZS00YjI0LWJhMjgtZTYyODZmNmFkNThh
https://docs.google.com/open?id=0B4t_NX-QeWDYNmVhYjAwMWMtYzc3ZS00YjI0LWJhMjgtZTYyODZmNmFkNThh
http://doi.acm.org/10.1145/1095495.1095500
http://doi.acm.org/10.1145/1095495.1095500
http://drdobbs.com/blogs/database/228700616
http://hdl.handle.net/2027.42/4163
http://hdl.handle.net/2027.42/4164
http://hdl.handle.net/2027.42/4164
http://docs.google.com/viewer?a=v&pid=explorer&chrome=true&srcid=0B4t_NX-QeWDYZGMwOTRmOTItZTg2Zi00YmJkLTg4MTktN2E4MWU0YmZlMjE3
http://docs.google.com/viewer?a=v&pid=explorer&chrome=true&srcid=0B4t_NX-QeWDYZGMwOTRmOTItZTg2Zi00YmJkLTg4MTktN2E4MWU0YmZlMjE3
http://www.foxprohistory.org/interview_wayne_ratliff.htm
http://www.embedded-computing.com/articles/id/?2020
http://www.itl.nist.gov/fipspubs/idef1x.doc

Database 16

Further reading
• Ling Liu and Tamer M. Özsu (Eds.) (2009). " Encyclopedia of Database Systems (http:/ / www. springer. com/

computer/ database+ management+ & + information+ retrieval/ book/ 978-0-387-49616-0), 4100 p. 60 illus.
ISBN 978-0-387-49616-0.

•• Beynon-Davies, P. (2004). Database Systems. 3rd Edition. Palgrave, Houndmills, Basingstoke.
• Connolly, Thomas and Carolyn Begg. Database Systems. New York: Harlow, 2002.
• Date, C. J. (2003). An Introduction to Database Systems, Fifth Edition. Addison Wesley. ISBN 0-201-51381-1.
• Gray, J. and Reuter, A. Transaction Processing: Concepts and Techniques, 1st edition, Morgan Kaufmann

Publishers, 1992.
• Kroenke, David M. and David J. Auer. Database Concepts. 3rd ed. New York: Prentice, 2007.
• Raghu Ramakrishnan and Johannes Gehrke, Database Management Systems (http:/ / pages. cs. wisc. edu/

~dbbook/)
• Abraham Silberschatz, Henry F. Korth, S. Sudarshan, Database System Concepts (http:/ / www. db-book. com/)
• Discussion on database systems, (http:/ / www. bbconsult. co. uk/ Documents/ Database-Systems. docx)
• Lightstone, S.; Teorey, T.; Nadeau, T. (2007). Physical Database Design: the database professional's guide to

exploiting indexes, views, storage, and more. Morgan Kaufmann Press. ISBN 0-12-369389-6.
• Teorey, T.; Lightstone, S. and Nadeau, T. Database Modeling & Design: Logical Design, 4th edition, Morgan

Kaufmann Press, 2005. ISBN 0-12-685352-5

External links
• Database (http:/ / www. dmoz. org/ Computers/ Data_Formats/ Database/) at the Open Directory Project

Database model

Collage of five types of database models.

A database model is a type of data
model that determines the logical
structure of a database and
fundamentally determines in which
manner data can be stored, organized,
and manipulated. The most popular
example of a database model is the
relational model, which uses a
table-based format.

Common logical data models for
databases include:

•• Hierarchical database model
•• Network model
•• Relational model
• Entity–relationship model

• Enhanced entity–relationship
model

•• Object model
•• Document model
• Entity–attribute–value model

http://www.springer.com/computer/database+management+&+information+retrieval/book/978-0-387-49616-0
http://www.springer.com/computer/database+management+&+information+retrieval/book/978-0-387-49616-0
http://en.wikipedia.org/w/index.php?title=Christopher_J._Date
http://en.wikipedia.org/w/index.php?title=International_Standard_Book_Number
http://en.wikipedia.org/w/index.php?title=Special:BookSources/0-201-51381-1
http://en.wikipedia.org/w/index.php?title=Raghu_Ramakrishnan
http://en.wikipedia.org/w/index.php?title=Johannes_Gehrke
http://pages.cs.wisc.edu/~dbbook/
http://pages.cs.wisc.edu/~dbbook/
http://en.wikipedia.org/w/index.php?title=Abraham_Silberschatz
http://www.db-book.com/
http://www.bbconsult.co.uk/Documents/Database-Systems.docx
http://en.wikipedia.org/w/index.php?title=International_Standard_Book_Number
http://en.wikipedia.org/w/index.php?title=Special:BookSources/0-12-369389-6
http://www.dmoz.org/Computers/Data_Formats/Database/
http://en.wikipedia.org/w/index.php?title=Open_Directory_Project
http://en.wikipedia.org/w/index.php?title=File%3ADatabase_models.jpg
http://en.wikipedia.org/w/index.php?title=Data_model
http://en.wikipedia.org/w/index.php?title=Data_model
http://en.wikipedia.org/w/index.php?title=Data
http://en.wikipedia.org/w/index.php?title=Logical_data_model
http://en.wikipedia.org/w/index.php?title=Hierarchical_database_model
http://en.wikipedia.org/w/index.php?title=Network_model
http://en.wikipedia.org/w/index.php?title=Entity%E2%80%93relationship_model
http://en.wikipedia.org/w/index.php?title=Enhanced_entity%E2%80%93relationship_model
http://en.wikipedia.org/w/index.php?title=Enhanced_entity%E2%80%93relationship_model
http://en.wikipedia.org/w/index.php?title=Object_database
http://en.wikipedia.org/w/index.php?title=Entity%E2%80%93attribute%E2%80%93value_model

Database model 17

•• Star schema
An object-relational database combines the two related structures.
Physical data models include:
•• Inverted index
•• Flat file
Other models include:
•• Associative model
•• Multidimensional model
•• Multivalue model
•• Semantic model
•• XML database
•• Named graph
•• Triplestore

Relationships and functions
A given database management system may provide one or more of the five models. The optimal structure depends
on the natural organization of the application's data, and on the application's requirements, which include transaction
rate (speed), reliability, maintainability, scalability, and cost. Most database management systems are built around
one particular data model, although it is possible for products to offer support for more than one model.
Various physical data models can implement any given logical model. Most database software will offer the user
some level of control in tuning the physical implementation, since the choices that are made have a significant effect
on performance.
A model is not just a way of structuring data: it also defines a set of operations that can be performed on the data.
The relational model, for example, defines operations such as select (project) and join. Although these operations
may not be explicit in a particular query language, they provide the foundation on which a query language is built.

Flat model

Flat File Model.

The flat (or table) model consists of a
single, two-dimensional array of data
elements, where all members of a
given column are assumed to be
similar values, and all members of a
row are assumed to be related to one
another. For instance, columns for
name and password that might be used
as a part of a system security database.
Each row would have the specific
password associated with an individual
user. Columns of the table often have a
type associated with them, defining them as character data, date or time information, integers, or floating point
numbers. This tabular format is a precursor to the relational model.

http://en.wikipedia.org/w/index.php?title=Star_schema
http://en.wikipedia.org/w/index.php?title=Physical_data_model
http://en.wikipedia.org/w/index.php?title=Inverted_index
http://en.wikipedia.org/w/index.php?title=Flat_file_database
http://en.wikipedia.org/w/index.php?title=Associative_model_of_data
http://en.wikipedia.org/w/index.php?title=Multidimensional_database
http://en.wikipedia.org/w/index.php?title=Multivalue_model
http://en.wikipedia.org/w/index.php?title=Semantic_data_model
http://en.wikipedia.org/w/index.php?title=XML_database
http://en.wikipedia.org/w/index.php?title=Named_graph
http://en.wikipedia.org/w/index.php?title=Triplestore
http://en.wikipedia.org/w/index.php?title=Database_management_system
http://en.wikipedia.org/w/index.php?title=Physical_data_model
http://en.wikipedia.org/w/index.php?title=Select_%28SQL%29
http://en.wikipedia.org/w/index.php?title=Projection_%28relational_algebra%29
http://en.wikipedia.org/w/index.php?title=Join_%28SQL%29
http://en.wikipedia.org/w/index.php?title=File%3AFlat_File_Model.svg
http://en.wikipedia.org/w/index.php?title=Flat_file_database
http://en.wikipedia.org/w/index.php?title=Data

Database model 18

Early data models
These models were popular in the 1960s, 1970s, but nowadays can be found primarily in old legacy systems. They
are characterized primarily by being navigational with strong connections between their logical and physical
representations, and deficiencies in data independence.

Hierarchical model

Hierarchical Model.

In a hierarchical model, data is
organized into a tree-like structure,
implying a single parent for each
record. A sort field keeps sibling
records in a particular order.
Hierarchical structures were widely
used in the early mainframe database
management systems, such as the
Information Management System
(IMS) by IBM, and now describe the
structure of XML documents. This
structure allows one one-to-many
relationship between two types of data.
This structure is very efficient to

describe many relationships in the real world; recipes, table of contents, ordering of paragraphs/verses, any nested
and sorted information.

This hierarchy is used as the physical order of records in storage. Record access is done by navigating through the
data structure using pointers combined with sequential accessing. Because of this, the hierarchical structure is
inefficient for certain database operations when a full path (as opposed to upward link and sort field) is not also
included for each record. Such limitations have been compensated for in later IMS versions by additional logical
hierarchies imposed on the base physical hierarchy.

http://en.wikipedia.org/w/index.php?title=Legacy_system
http://en.wikipedia.org/w/index.php?title=Navigational_database
http://en.wikipedia.org/w/index.php?title=Data_independence
http://en.wikipedia.org/w/index.php?title=File%3AHierarchical_Model.svg
http://en.wikipedia.org/w/index.php?title=Hierarchical_database
http://en.wikipedia.org/w/index.php?title=Tree_%28data_structure%29
http://en.wikipedia.org/w/index.php?title=Information_Management_System
http://en.wikipedia.org/w/index.php?title=IBM
http://en.wikipedia.org/w/index.php?title=XML
http://en.wikipedia.org/w/index.php?title=Pointer_%28computer_programming%29

Database model 19

Network model

Network Model.

The network model expands upon the
hierarchical structure, allowing
many-to-many relationships in a
tree-like structure that allows multiple
parents. It was the most popular before
being replaced by the relational model,
and is defined by the CODASYL
specification.

The network model organizes data
using two fundamental concepts, called
records and sets. Records contain
fields (which may be organized
hierarchically, as in the programming
language COBOL). Sets (not to be
confused with mathematical sets)
define one-to-many[1] relationships
between records: one owner, many
members. A record may be an owner
in any number of sets, and a member in any number of sets.

A set consists of circular linked lists where one record type, the set owner or parent, appears once in each circle, and
a second record type, the subordinate or child, may appear multiple times in each circle. In this way a hierarchy may
be established between any two record types, e.g., type A is the owner of B. At the same time another set may be
defined where B is the owner of A. Thus all the sets comprise a general directed graph (ownership defines a
direction), or network construct. Access to records is either sequential (usually in each record type) or by navigation
in the circular linked lists.

The network model is able to represent redundancy in data more efficiently than in the hierarchical model, and there
can be more than one path from an ancestor node to a descendant. The operations of the network model are
navigational in style: a program maintains a current position, and navigates from one record to another by following
the relationships in which the record participates. Records can also be located by supplying key values.
Although it is not an essential feature of the model, network databases generally implement the set relationships by
means of pointers that directly address the location of a record on disk. This gives excellent retrieval performance, at
the expense of operations such as database loading and reorganization.
Popular DBMS products that utilized it were Cincom Systems' Total and Cullinet's IDMS. IDMS gained a
considerable customer base; in the 1980s, it adopted the relational model and SQL in addition to its original tools
and languages.
Most object databases (invented in the 1990s) use the navigational concept to provide fast navigation across
networks of objects, generally using object identifiers as "smart" pointers to related objects. Objectivity/DB, for
instance, implements named one-to-one, one-to-many, many-to-one, and many-to-many named relationships that can
cross databases. Many object databases also support SQL, combining the strengths of both models.

http://en.wikipedia.org/w/index.php?title=File%3ANetwork_Model.svg
http://en.wikipedia.org/w/index.php?title=Network_database
http://en.wikipedia.org/w/index.php?title=CODASYL
http://en.wikipedia.org/w/index.php?title=COBOL
http://en.wikipedia.org/w/index.php?title=One-to-many
http://toolserver.org/%7Edispenser/cgi-bin/dab_solver.py?page=Database_model&editintro=Template:Disambiguation_needed/editintro&client=Template:Dn
http://en.wikipedia.org/w/index.php?title=Linked_list
http://en.wikipedia.org/w/index.php?title=Directed_graph
http://en.wikipedia.org/w/index.php?title=Pointer_%28computer_programming%29
http://en.wikipedia.org/w/index.php?title=Cincom_Systems
http://en.wikipedia.org/w/index.php?title=Cullinet
http://en.wikipedia.org/w/index.php?title=IDMS
http://en.wikipedia.org/w/index.php?title=Object_database
http://en.wikipedia.org/w/index.php?title=Objectivity/DB
http://en.wikipedia.org/w/index.php?title=SQL

Database model 20

Inverted file model
In an inverted file or inverted index, the contents of the data are used as keys in a lookup table, and the values in the
table are pointers to the location of each instance of a given content item. This is also the logical structure of
contemporary database indexes, which might only use the contents from a particular columns in the lookup table.
The inverted file data model can put indexes in a second set of files next to existing flat database files, in order to
efficiently directly access needed records in these files.
Notable for using this data model is the ADABAS DBMS of Software AG, introduced in 1970. ADABAS has
gained considerable customer base and exists and supported until today. In the 1980s it has adopted the relational
model and SQL in addition to its original tools and languages.

Relational model

The relational model was introduced by E.F. Codd in 1970[2] as a way to make database management systems more
independent of any particular application. It is a mathematical model defined in terms of predicate logic and set
theory, and systems implementing it have been used by mainframe, midrange and microcomputer systems.
The products that are generally referred to as relational databases in fact implement a model that is only an
approximation to the mathematical model defined by Codd. Three key terms are used extensively in relational
database models: relations, attributes, and domains. A relation is a table with columns and rows. The named
columns of the relation are called attributes, and the domain is the set of values the attributes are allowed to take.
The basic data structure of the relational model is the table, where information about a particular entity (say, an
employee) is represented in rows (also called tuples) and columns. Thus, the "relation" in "relational database" refers
to the various tables in the database; a relation is a set of tuples. The columns enumerate the various attributes of the
entity (the employee's name, address or phone number, for example), and a row is an actual instance of the entity (a
specific employee) that is represented by the relation. As a result, each tuple of the employee table represents various
attributes of a single employee.
All relations (and, thus, tables) in a relational database have to adhere to some basic rules to qualify as relations.
First, the ordering of columns is immaterial in a table. Second, there can't be identical tuples or rows in a table. And
third, each tuple will contain a single value for each of its attributes.
A relational database contains multiple tables, each similar to the one in the "flat" database model. One of the
strengths of the relational model is that, in principle, any value occurring in two different records (belonging to the
same table or to different tables), implies a relationship among those two records. Yet, in order to enforce explicit
integrity constraints, relationships between records in tables can also be defined explicitly, by identifying or
non-identifying parent-child relationships characterized by assigning cardinality (1:1, (0)1:M, M:M). Tables can also
have a designated single attribute or a set of attributes that can act as a "key", which can be used to uniquely identify
each tuple in the table.
A key that can be used to uniquely identify a row in a table is called a primary key. Keys are commonly used to join
or combine data from two or more tables. For example, an Employee table may contain a column named Location
which contains a value that matches the key of a Location table. Keys are also critical in the creation of indexes,
which facilitate fast retrieval of data from large tables. Any column can be a key, or multiple columns can be

http://en.wikipedia.org/w/index.php?title=Inverted_index
http://en.wikipedia.org/w/index.php?title=Index_%28database%29
http://en.wikipedia.org/w/index.php?title=ADABAS
http://en.wikipedia.org/w/index.php?title=Software_AG
http://en.wikipedia.org/w/index.php?title=File:Emp_Tables_%28Database%29.PNG
http://en.wikipedia.org/w/index.php?title=E.F._Codd
http://en.wikipedia.org/w/index.php?title=Predicate_logic
http://en.wikipedia.org/w/index.php?title=Set_theory
http://en.wikipedia.org/w/index.php?title=Set_theory
http://en.wikipedia.org/w/index.php?title=Data_domain
http://en.wikipedia.org/w/index.php?title=Tuple
http://en.wikipedia.org/w/index.php?title=Integrity_constraints

Database model 21

grouped together into a compound key. It is not necessary to define all the keys in advance; a column can be used as
a key even if it was not originally intended to be one.
A key that has an external, real-world meaning (such as a person's name, a book's ISBN, or a car's serial number) is
sometimes called a "natural" key. If no natural key is suitable (think of the many people named Brown), an arbitrary
or surrogate key can be assigned (such as by giving employees ID numbers). In practice, most databases have both
generated and natural keys, because generated keys can be used internally to create links between rows that cannot
break, while natural keys can be used, less reliably, for searches and for integration with other databases. (For
example, records in two independently developed databases could be matched up by social security number, except
when the social security numbers are incorrect, missing, or have changed.)
The most common query language used with the relational model is the Structured Query Language (SQL).

Dimensional model
The dimensional model is a specialized adaptation of the relational model used to represent data in data warehouses
in a way that data can be easily summarized using online analytical processing, or OLAP queries. In the dimensional
model, a database schema consists of a single large table of facts that are described using dimensions and measures.
A dimension provides the context of a fact (such as who participated, when and where it happened, and its type) and
is used in queries to group related facts together. Dimensions tend to be discrete and are often hierarchical; for
example, the location might include the building, state, and country. A measure is a quantity describing the fact, such
as revenue. It is important that measures can be meaningfully aggregated—for example, the revenue from different
locations can be added together.
In an OLAP query, dimensions are chosen and the facts are grouped and aggregated together to create a summary.
The dimensional model is often implemented on top of the relational model using a star schema, consisting of one
highly normalized table containing the facts, and surrounding denormalized tables containing each dimension. An
alternative physical implementation, called a snowflake schema, normalizes multi-level hierarchies within a
dimension into multiple tables.
A data warehouse can contain multiple dimensional schemas that share dimension tables, allowing them to be used
together. Coming up with a standard set of dimensions is an important part of dimensional modeling.
Its high performance has made the dimensional model the most popular database structure for OLAP.

Post-relational database models
Products offering a more general data model than the relational model are sometimes classified as post-relational.[3]

Alternate terms include "hybrid database", "Object-enhanced RDBMS" and others. The data model in such products
incorporates relations but is not constrained by E.F. Codd's Information Principle, which requires that

all information in the database must be cast explicitly in terms of values in relations and in no other way
Some of these extensions to the relational model integrate concepts from technologies that pre-date the relational
model. For example, they allow representation of a directed graph with trees on the nodes. The German company
sones implements this concept in its GraphDB.
Some post-relational products extend relational systems with non-relational features. Others arrived in much the
same place by adding relational features to pre-relational systems. Paradoxically, this allows products that are
historically pre-relational, such as PICK and MUMPS, to make a plausible claim to be post-relational.
The resource space model (RSM) is a non-relational data model based on multi-dimensional classification.

http://en.wikipedia.org/w/index.php?title=ISBN
http://en.wikipedia.org/w/index.php?title=Social_security_number
http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=Dimensional_database
http://en.wikipedia.org/w/index.php?title=Data_warehouse
http://en.wikipedia.org/w/index.php?title=OLAP
http://en.wikipedia.org/w/index.php?title=Star_schema
http://en.wikipedia.org/w/index.php?title=Snowflake_schema
http://en.wikipedia.org/w/index.php?title=Dimensional_modeling
http://en.wikipedia.org/w/index.php?title=E.F._Codd
http://en.wikipedia.org/w/index.php?title=Tree_data_structure
http://en.wikipedia.org/w/index.php?title=GraphDB
http://en.wikipedia.org/w/index.php?title=Pick_operating_system
http://en.wikipedia.org/w/index.php?title=MUMPS

Database model 22

Graph model
Graph databases allow even more general structure than a network database; any node may be connected to any other
node.

Multivalue model
Multivalue databases are "lumpy" data, in that they can store exactly the same way as relational databases, but they
also permit a level of depth which the relational model can only approximate using sub-tables. This is nearly
identical to the way XML expresses data, where a given field/attribute can have multiple right answers at the same
time. Multivalue can be thought of as a compressed form of XML.
An example is an invoice, which in either multivalue or relational data could be seen as (A) Invoice Header Table -
one entry per invoice, and (B) Invoice Detail Table - one entry per line item. In the multivalue model, we have the
option of storing the data as on table, with an embedded table to represent the detail: (A) Invoice Table - one entry
per invoice, no other tables needed.
The advantage is that the atomicity of the Invoice (conceptual) and the Invoice (data representation) are one-to-one.
This also results in fewer reads, less referential integrity issues, and a dramatic decrease in the hardware needed to
support a given transaction volume.

Object-oriented database models

Example of an Object-Oriented Model.

In the 1990s, the object-oriented
programming paradigm was applied to
database technology, creating a new
database model known as object
databases. This aims to avoid the
object-relational impedance mismatch
- the overhead of converting
information between its representation
in the database (for example as rows in
tables) and its representation in the
application program (typically as
objects). Even further, the type system
used in a particular application can be
defined directly in the database,
allowing the database to enforce the
same data integrity invariants. Object
databases also introduce the key ideas
of object programming, such as encapsulation and polymorphism, into the world of databases.

A variety of these ways have been tried Wikipedia:Manual of Style/Words to watch#Unsupported attributionsfor
storing objects in a database. SomeWikipedia:Avoid weasel words products have approached the problem from the
application programming end, by making the objects manipulated by the program persistent. This typically requires
the addition of some kind of query language, since conventional programming languages do not have the ability to
find objects based on their information content. OthersWikipedia:Avoid weasel words have attacked the problem
from the database end, by defining an object-oriented data model for the database, and defining a database
programming language that allows full programming capabilities as well as traditional query facilities.
Object databases suffered because of a lack of standardization: although standards were defined by ODMG, they
were never implemented well enough to ensure interoperability between products. Nevertheless, object databases

http://en.wikipedia.org/w/index.php?title=File%3AObject-Oriented_Model.svg
http://en.wikipedia.org/w/index.php?title=Object-oriented_programming
http://en.wikipedia.org/w/index.php?title=Object-oriented_programming
http://en.wikipedia.org/w/index.php?title=Object_database
http://en.wikipedia.org/w/index.php?title=Object_database
http://en.wikipedia.org/w/index.php?title=Object-relational_impedance_mismatch
http://en.wikipedia.org/w/index.php?title=Type_system
http://en.wikipedia.org/w/index.php?title=Encapsulation_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Polymorphism_%28computer_science%29
http://en.wikipedia.org/wiki/Manual_of_Style/Words_to_watch#Unsupported_attributions
http://en.wikipedia.org/wiki/Avoid_weasel_words
http://en.wikipedia.org/w/index.php?title=Persistence_%28computer_science%29
http://en.wikipedia.org/wiki/Avoid_weasel_words
http://en.wikipedia.org/w/index.php?title=Object_Database_Management_Group

Database model 23

have been used successfully in many applications: usually specialized applications such as engineering databases or
molecular biology databases rather than mainstream commercial data processing. However, object database ideas
were picked up by the relational vendors and influenced extensions made to these products and indeed to the SQL
language.
An alternative to translating between objects and relational databases is to use an object-relational mapping (ORM)
library.

References
[1] http:/ / toolserver. org/ %7Edispenser/ cgi-bin/ dab_solver. py?page=Database_model& editintro=Template:Disambiguation_needed/

editintro& client=Template:Dn
[2] E.F. Codd (1970). "A relational model of data for large shared data banks". In: Communications of the ACM archive. Vol 13. Issue 6(June

1970). pp.377-387.
[3] Introducing databases by Stephen Chu, in Conrick, M. (2006) Health informatics: transforming healthcare with technology, Thomson, ISBN

0-17-012731-1, p. 69.

Database normalization
Database normalization is the process of organizing the fields and tables of a relational database to minimize
redundancy and dependency. Normalization usually involves dividing large tables into smaller (and less redundant)
tables and defining relationships between them. The objective is to isolate data so that additions, deletions, and
modifications of a field can be made in just one table and then propagated through the rest of the database using the
defined relationships.
Edgar F. Codd, the inventor of the relational model, introduced the concept of normalization and what we now know
as the First Normal Form (1NF) in 1970. Codd went on to define the Second Normal Form (2NF) and Third Normal
Form (3NF) in 1971,[1] and Codd and Raymond F. Boyce defined the Boyce-Codd Normal Form (BCNF) in 1974.[2]

Informally, a relational database table is often described as "normalized" if it is in the Third Normal Form.[3] Most
3NF tables are free of insertion, update, and deletion anomalies.
A standard piece of database design guidance is that the designer should first create a fully normalized design; then
selective denormalization can be performed for performance reasons.[4]

Objectives of normalization
A basic objective of the first normal form defined by Edgar Frank "Ted" Codd in 1970 was to permit data to be
queried and manipulated using a "universal data sub-language" grounded in first-order logic.[5] (SQL is an example
of such a data sub-language, albeit one that Codd regarded as seriously flawed.)[6]

The objectives of normalization beyond 1NF (First Normal Form) were stated as follows by Codd:
1. To free the collection of relations from undesirable insertion, update and deletion dependencies;
2. To reduce the need for restructuring the collection of relations, as new types of data are introduced,
and thus increase the life span of application programs;
3. To make the relational model more informative to users;
4. To make the collection of relations neutral to the query statistics, where these statistics are liable to
change as time goes by.

— E.F. Codd, "Further Normalization of the Data Base Relational Model"[7]

The sections below give details of each of these objectives.

http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=Object-relational_mapping
http://toolserver.org/%7Edispenser/cgi-bin/dab_solver.py?page=Database_model&editintro=Template:Disambiguation_needed/editintro&client=Template:Dn
http://toolserver.org/%7Edispenser/cgi-bin/dab_solver.py?page=Database_model&editintro=Template:Disambiguation_needed/editintro&client=Template:Dn
http://en.wikipedia.org/w/index.php?title=Field_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Data_redundancy
http://en.wikipedia.org/w/index.php?title=Edgar_F._Codd
http://en.wikipedia.org/w/index.php?title=First_normal_form
http://en.wikipedia.org/w/index.php?title=Second_normal_form
http://en.wikipedia.org/w/index.php?title=Third_normal_form
http://en.wikipedia.org/w/index.php?title=Raymond_F._Boyce
http://en.wikipedia.org/w/index.php?title=Boyce%E2%80%93Codd_normal_form
http://en.wikipedia.org/w/index.php?title=Denormalization
http://en.wikipedia.org/w/index.php?title=Computer_performance
http://en.wikipedia.org/w/index.php?title=First_normal_form
http://en.wikipedia.org/w/index.php?title=First-order_logic
http://en.wikipedia.org/w/index.php?title=SQL

Database normalization 24

Free the database of modification anomalies

An update anomaly. Employee 519 is shown as having different addresses
on different records.

An insertion anomaly. Until the new faculty member, Dr. Newsome, is
assigned to teach at least one course, his details cannot be recorded.

A deletion anomaly. All information about Dr. Giddens is lost if he
temporarily ceases to be assigned to any courses.

When an attempt is made to modify (update,
insert into, or delete from) a table, undesired
side-effects may follow. Not all tables can suffer
from these side-effects; rather, the side-effects
can only arise in tables that have not been
sufficiently normalized. An insufficiently
normalized table might have one or more of the
following characteristics:
• The same information can be expressed on

multiple rows; therefore updates to the table
may result in logical inconsistencies. For
example, each record in an "Employees'
Skills" table might contain an Employee ID,
Employee Address, and Skill; thus a change
of address for a particular employee will
potentially need to be applied to multiple
records (one for each skill). If the update is
not carried through successfully—if, that is,
the employee's address is updated on some
records but not others—then the table is left
in an inconsistent state. Specifically, the table
provides conflicting answers to the question
of what this particular employee's address is.
This phenomenon is known as an update
anomaly.

• There are circumstances in which certain
facts cannot be recorded at all. For example,
each record in a "Faculty and Their Courses"
table might contain a Faculty ID, Faculty
Name, Faculty Hire Date, and Course
Code—thus we can record the details of any
faculty member who teaches at least one
course, but we cannot record the details of a
newly hired faculty member who has not yet been assigned to teach any courses except by setting the Course
Code to null. This phenomenon is known as an insertion anomaly.

• Under certain circumstances, deletion of data representing certain facts necessitates deletion of data representing
completely different facts. The "Faculty and Their Courses" table described in the previous example suffers from
this type of anomaly, for if a faculty member temporarily ceases to be assigned to any courses, we must delete the
last of the records on which that faculty member appears, effectively also deleting the faculty member. This
phenomenon is known as a deletion anomaly.

http://en.wikipedia.org/w/index.php?title=File%3AUpdate_anomaly.svg
http://en.wikipedia.org/w/index.php?title=File%3AInsertion_anomaly.svg
http://en.wikipedia.org/w/index.php?title=File%3ADeletion_anomaly.svg

Database normalization 25

Minimize redesign when extending the database structure
When a fully normalized database structure is extended to allow it to accommodate new types of data, the
pre-existing aspects of the database structure can remain largely or entirely unchanged. As a result, applications
interacting with the database are minimally affected.

Make the data model more informative to users
Normalized tables, and the relationship between one normalized table and another, mirror real-world concepts and
their interrelationships.

Avoid bias towards any particular pattern of querying
Normalized tables are suitable for general-purpose querying. This means any queries against these tables, including
future queries whose details cannot be anticipated, are supported. In contrast, tables that are not normalized lend
themselves to some types of queries, but not others.
For example, consider an online bookseller whose customers maintain wishlists of books they'd like to have. For the
obvious, anticipated query—what books does this customer want?—it's enough to store the customer's wishlist in the
table as, say, a homogeneous string of authors and titles.
With this design, though, the database can answer only that one single query. It cannot by itself answer interesting
but unanticipated queries: What is the most-wished-for book? Which customers are interested in WWII espionage?
How does Lord Byron stack up against his contemporary poets? Answers to these questions must come from special
adaptive tools completely separate from the database. One tool might be software written especially to handle such
queries. This special adaptive software has just one single purpose: in effect to normalize the non-normalized field.
Unforeseen queries can be answered trivially, and entirely within the database framework, with a normalized table.

Example
Querying and manipulating the data within a data structure which is not normalized, such as the following non-1NF
representation of customers' credit card transactions, involves more complexity than is really necessary:
Customer Jones Wilkinson Stevens Transactions

Tr. ID Date Amount

12890 14-Oct-2003 −87

12904 15-Oct-2003 −50

Tr. ID Date Amount

12898 14-Oct-2003 −21

Database normalization 26

Tr. ID Date Amount

12907 15-Oct-2003 −18

14920 20-Nov-2003 −70

15003 27-Nov-2003 −60

To each customer corresponds a repeating group of transactions. The automated evaluation of any query relating to
customers' transactions therefore would broadly involve two stages:
1.1. Unpacking one or more customers' groups of transactions allowing the individual transactions in a group to be

examined, and
2.2. Deriving a query result based on the results of the first stage
For example, in order to find out the monetary sum of all transactions that occurred in October 2003 for all
customers, the system would have to know that it must first unpack the Transactions group of each customer, then
sum the Amounts of all transactions thus obtained where the Date of the transaction falls in October 2003.
One of Codd's important insights was that this structural complexity could always be removed completely, leading to
much greater power and flexibility in the way queries could be formulated (by users and applications) and evaluated
(by the DBMS). The normalized equivalent of the structure above would look like this:

Customer Tr. ID Date Amount

Jones 12890 14-Oct-2003 −87

Jones 12904 15-Oct-2003 −50

Wilkins 12898 14-Oct-2003 −21

Stevens 12907 15-Oct-2003 −18

Stevens 14920 20-Nov-2003 −70

Stevens 15003 27-Nov-2003 −60

Now each row represents an individual credit card transaction, and the DBMS can obtain the answer of interest,
simply by finding all rows with a Date falling in October, and summing their Amounts. The data structure places all
of the values on an equal footing, exposing each to the DBMS directly, so each can potentially participate directly in
queries; whereas in the previous situation some values were embedded in lower-level structures that had to be
handled specially. Accordingly, the normalized design lends itself to general-purpose query processing, whereas the
unnormalized design does not.

Background to normalization: definitions
Functional dependency

In a given table, an attribute Y is said to have a functional dependency on a set of attributes X (written X → Y)
if and only if each X value is associated with precisely one Y value. For example, in an "Employee" table that
includes the attributes "Employee ID" and "Employee Date of Birth", the functional dependency {Employee
ID} → {Employee Date of Birth} would hold. It follows from the previous two sentences that each
{Employee ID} is associated with precisely one {Employee Date of Birth}.

Trivial functional dependency
A trivial functional dependency is a functional dependency of an attribute on a superset of itself. {Employee
ID, Employee Address} → {Employee Address} is trivial, as is {Employee Address} → {Employee
Address}.

Full functional dependency

http://en.wikipedia.org/w/index.php?title=User_%28computing%29
http://en.wikipedia.org/w/index.php?title=Application_software
http://en.wikipedia.org/w/index.php?title=Database_management_system
http://en.wikipedia.org/w/index.php?title=Functional_dependency

Database normalization 27

An attribute is fully functionally dependent on a set of attributes X if it is:
•• functionally dependent on X, and
• not functionally dependent on any proper subset of X. {Employee Address} has a functional dependency on

{Employee ID, Skill}, but not a full functional dependency, because it is also dependent on {Employee
ID}.Even by the removal of {Skill} functional dependency still holds between {Employee Address} and
{Employee ID}.

Transitive dependency
A transitive dependency is an indirect functional dependency, one in which X→Z only by virtue of X→Y and
Y→Z.

Multivalued dependency
A multivalued dependency is a constraint according to which the presence of certain rows in a table implies
the presence of certain other rows.

Join dependency
A table T is subject to a join dependency if T can always be recreated by joining multiple tables each having a
subset of the attributes of T.

Superkey
A superkey is a combination of attributes that can be used to uniquely identify a database record. A table
might have many superkeys.

Candidate key
A candidate key is a special subset of superkeys that do not have any extraneous information in them: it is a
minimal superkey.
Example:

A table with the fields <Name>, <Age>, <SSN> and <Phone Extension> has many possible superkeys.
Three of these are <SSN>, <Phone Extension, Name> and <SSN, Name>. Of those, only <SSN> is a
candidate key as the others contain information not necessary to uniquely identify records ('SSN' here
refers to Social Security Number, which is unique to each person).

Non-prime attribute
A non-prime attribute is an attribute that does not occur in any candidate key. Employee Address would be a
non-prime attribute in the "Employees' Skills" table.

Prime attribute
A prime attribute, conversely, is an attribute that does occur in some candidate key.

Primary key
One candidate key in a relation may be designated the primary key. While that may be a common practice (or
even a required one in some environments), it is strictly notational and has no bearing on normalization. With
respect to normalization, all candidate keys have equal standing and are treated the same.

Normal forms
The normal forms (abbrev. NF) of relational database theory provide criteria for determining a table's degree of
immunity against logical inconsistencies and anomalies. The higher the normal form applicable to a table, the less
vulnerable it is. Each table has a "highest normal form" (HNF): by definition, a table always meets the
requirements of its HNF and of all normal forms lower than its HNF; also by definition, a table fails to meet the
requirements of any normal form higher than its HNF.

http://en.wikipedia.org/w/index.php?title=Transitive_dependency
http://en.wikipedia.org/w/index.php?title=Multivalued_dependency
http://en.wikipedia.org/w/index.php?title=Join_dependency
http://en.wikipedia.org/w/index.php?title=Primary_key

Database normalization 28

The normal forms are applicable to individual tables; to say that an entire database is in normal form n is to say that
all of its tables are in normal form n.
Newcomers to database design sometimes suppose that normalization proceeds in an iterative fashion, i.e. a 1NF
design is first normalized to 2NF, then to 3NF, and so on. This is not an accurate description of how normalization
typically works. A sensibly designed table is likely to be in 3NF on the first attempt; furthermore, if it is 3NF, it is
overwhelmingly likely to have an HNF of 5NF. Achieving the "higher" normal forms (above 3NF) does not usually
require an extra expenditure of effort on the part of the designer, because 3NF tables usually need no modification to
meet the requirements of these higher normal forms.
The main normal forms are summarized below.

Normal form Defined by In Brief definition

1NF First normal form Two versions: E.F.
Codd (1970), C.J.
Date (2003)

1970
and
2003 [8]

A relation is in first normal form if the domain of each attribute contains only
atomic values, and the value of each attribute contains only a single value from that
domain.

2NF Second normal
form

E.F. Codd 1971 No non-prime attribute in the table is functionally dependent on a proper subset of
any candidate key

3NF Third normal
form

Two versions: E.F.
Codd (1971), C.
Zaniolo (1982)

1971
and
1982 [9]

Every non-prime attribute is non-transitively dependent on every candidate key in
the table. The attributes that do not contribute to the description of the primary key
are removed from the table. In other words, no transitive dependency is allowed.

EKNF Elementary Key
Normal Form

C. Zaniolo 1982 Every non-trivial functional dependency in the table is either the dependency of an
elementary key attribute or a dependency on a superkey

BCNF Boyce–Codd
normal form

Raymond F. Boyce
and E.F. Codd

1974
[10]

Every non-trivial functional dependency in the table is a dependency on a superkey

4NF Fourth normal
form

Ronald Fagin 1977 Every non-trivial multivalued dependency in the table is a dependency on a
superkey

5NF Fifth normal form Ronald Fagin 1979
[11]

Every non-trivial join dependency in the table is implied by the superkeys of the
table

DKNF Domain/key
normal form

Ronald Fagin 1981
[12]

Every constraint on the table is a logical consequence of the table's domain
constraints and key constraints

6NF Sixth normal
form

C.J. Date, Hugh
Darwen, and Nikos
Lorentzos

2002
[13]

Table features no non-trivial join dependencies at all (with reference to generalized
join operator)

Denormalization
Databases intended for online transaction processing (OLTP) are typically more normalized than databases intended
for online analytical processing (OLAP). OLTP applications are characterized by a high volume of small
transactions such as updating a sales record at a supermarket checkout counter. The expectation is that each
transaction will leave the database in a consistent state. By contrast, databases intended for OLAP operations are
primarily "read mostly" databases. OLAP applications tend to extract historical data that has accumulated over a
long period of time. For such databases, redundant or "denormalized" data may facilitate business intelligence
applications. Specifically, dimensional tables in a star schema often contain denormalized data. The denormalized or
redundant data must be carefully controlled during extract, transform, load (ETL) processing, and users should not
be permitted to see the data until it is in a consistent state. The normalized alternative to the star schema is the
snowflake schema. In many cases, the need for denormalization has waned as computers and RDBMS software have
become more powerful, but since data volumes have generally increased along with hardware and software

http://en.wikipedia.org/w/index.php?title=First_normal_form
http://en.wikipedia.org/w/index.php?title=Edgar_F._Codd
http://en.wikipedia.org/w/index.php?title=Edgar_F._Codd
http://en.wikipedia.org/w/index.php?title=Christopher_J._Date
http://en.wikipedia.org/w/index.php?title=Christopher_J._Date
http://en.wikipedia.org/w/index.php?title=Data_domain
http://en.wikipedia.org/w/index.php?title=First_normal_form%23Atomicity
http://en.wikipedia.org/w/index.php?title=Second_normal_form
http://en.wikipedia.org/w/index.php?title=Second_normal_form
http://en.wikipedia.org/w/index.php?title=Edgar_F._Codd
http://en.wikipedia.org/w/index.php?title=Functional_dependency
http://en.wikipedia.org/w/index.php?title=Proper_subset
http://en.wikipedia.org/w/index.php?title=Third_normal_form
http://en.wikipedia.org/w/index.php?title=Third_normal_form
http://en.wikipedia.org/w/index.php?title=Edgar_F._Codd
http://en.wikipedia.org/w/index.php?title=Edgar_F._Codd
http://en.wikipedia.org/w/index.php?title=Elementary_Key_Normal_Form
http://en.wikipedia.org/w/index.php?title=Elementary_Key_Normal_Form
http://en.wikipedia.org/w/index.php?title=Boyce%E2%80%93Codd_normal_form
http://en.wikipedia.org/w/index.php?title=Boyce%E2%80%93Codd_normal_form
http://en.wikipedia.org/w/index.php?title=Raymond_F._Boyce
http://en.wikipedia.org/w/index.php?title=Edgar_F._Codd
http://en.wikipedia.org/w/index.php?title=Fourth_normal_form
http://en.wikipedia.org/w/index.php?title=Fourth_normal_form
http://en.wikipedia.org/w/index.php?title=Ronald_Fagin
http://en.wikipedia.org/w/index.php?title=Multivalued_dependency
http://en.wikipedia.org/w/index.php?title=Fifth_normal_form
http://en.wikipedia.org/w/index.php?title=Ronald_Fagin
http://en.wikipedia.org/w/index.php?title=Join_dependency
http://en.wikipedia.org/w/index.php?title=Domain/key_normal_form
http://en.wikipedia.org/w/index.php?title=Domain/key_normal_form
http://en.wikipedia.org/w/index.php?title=Ronald_Fagin
http://en.wikipedia.org/w/index.php?title=Logical_consequence
http://en.wikipedia.org/w/index.php?title=Sixth_normal_form
http://en.wikipedia.org/w/index.php?title=Sixth_normal_form
http://en.wikipedia.org/w/index.php?title=Christopher_J._Date
http://en.wikipedia.org/w/index.php?title=Hugh_Darwen
http://en.wikipedia.org/w/index.php?title=Hugh_Darwen
http://en.wikipedia.org/w/index.php?title=Nikos_Lorentzos
http://en.wikipedia.org/w/index.php?title=Nikos_Lorentzos
http://en.wikipedia.org/w/index.php?title=Online_transaction_processing
http://en.wikipedia.org/w/index.php?title=Online_analytical_processing
http://en.wikipedia.org/w/index.php?title=Business_intelligence
http://en.wikipedia.org/w/index.php?title=Dimension_table
http://en.wikipedia.org/w/index.php?title=Star_schema
http://en.wikipedia.org/w/index.php?title=Extract%2C_transform%2C_load
http://en.wikipedia.org/w/index.php?title=Snowflake_schema

Database normalization 29

performance, OLAP databases often still use denormalized schemas.
Denormalization is also used to improve performance on smaller computers as in computerized cash-registers and
mobile devices, since these may use the data for look-up only (e.g. price lookups). Denormalization may also be
used when no RDBMS exists for a platform (such as Palm), or no changes are to be made to the data and a swift
response is crucial.

Non-first normal form (NF² or N1NF)
Denormalization is the opposite of normalization. In recognition that denormalization can be deliberate and useful,
the non-first normal form is a definition of database designs which do not conform to first normal form, by allowing
"sets and sets of sets to be attribute domains" (Schek 1982). The languages used to query and manipulate data in the
model must be extended accordingly to support such values.
One way of looking at this is to consider such structured values as being specialized types of values (domains), with
their own domain-specific languages. However, what is usually meant by non-1NF models is the approach in which
the relational model and the languages used to query it are extended with a general mechanism for such structure; for
instance, the nested relational model supports the use of relations as domain values, by adding two additional
operators (nest and unnest) to the relational algebra that can create and flatten nested relations, respectively.
Consider the following table:

First Normal Form

Person Favourite Colour

Bob blue

Bob red

Jane green

Jane yellow

Jane red

Assume a person has several favourite colours. Obviously, favourite colours consist of a set of colours modeled by
the given table. To transform a 1NF into an NF² table a "nest" operator is required which extends the relational
algebra of the higher normal forms. Applying the "nest" operator to the 1NF table yields the following NF² table:

Non-First Normal Form

Person Favourite Colours

Bob
Favourite Colour

blue

red

Jane
Favourite Colour

green

yellow

red

http://en.wikipedia.org/w/index.php?title=Nested_relational_model

Database normalization 30

To transform this NF² table back into a 1NF an "unnest" operator is required which extends the relational algebra of
the higher normal forms. The unnest, in this case, would make "colours" into its own table.
Although "unnest" is the mathematical inverse to "nest", the operator "nest" is not always the mathematical inverse
of "unnest". Another constraint required is for the operators to be bijective, which is covered by the Partitioned
Normal Form (PNF).

Notes and references
[1] Codd, E.F. "Further Normalization of the Data Base Relational Model". (Presented at Courant Computer Science Symposia Series 6, "Data

Base Systems", New York City, May 24–25, 1971.) IBM Research Report RJ909 (August 31, 1971). Republished in Randall J. Rustin (ed.),
Data Base Systems: Courant Computer Science Symposia Series 6. Prentice-Hall, 1972.

[2] Codd, E. F. "Recent Investigations into Relational Data Base Systems". IBM Research Report RJ1385 (April 23, 1974). Republished in Proc.
1974 Congress (Stockholm, Sweden, 1974). , N.Y.: North-Holland (1974).

[3] C.J. Date. An Introduction to Database Systems. Addison-Wesley (1999), p. 290
[4] Chris Date, for example, writes: "I believe firmly that anything less than a fully normalized design is strongly contraindicated ... [Y]ou should

"denormalize" only as a last resort. That is, you should back off from a fully normalized design only if all other strategies for improving
performance have somehow failed to meet requirements." Date, C.J. Database in Depth: Relational Theory for Practitioners. O'Reilly (2005),
p. 152.

[5] "The adoption of a relational model of data ... permits the development of a universal data sub-language based on an applied predicate
calculus. A first-order predicate calculus suffices if the collection of relations is in first normal form. Such a language would provide a
yardstick of linguistic power for all other proposed data languages, and would itself be a strong candidate for embedding (with appropriate
syntactic modification) in a variety of host Ianguages (programming, command- or problem-oriented)." Codd, "A Relational Model of Data
for Large Shared Data Banks" (http:/ / www. acm. org/ classics/ nov95/ toc. html), p. 381

[6] Codd, E.F. Chapter 23, "Serious Flaws in SQL", in The Relational Model for Database Management: Version 2. Addison-Wesley (1990), pp.
371–389

[7][7] Codd, E.F. "Further Normalization of the Data Base Relational Model", p. 34
[8] Date, C. J. "What First Normal Form Really Means" in Date on Database: Writings 2000–2006 (Springer-Verlag, 2006), pp. 127–128.
[9] Zaniolo, Carlo. "A New Normal Form for the Design of Relational Database Schemata." ACM Transactions on Database Systems 7(3),

September 1982.
[10] Codd, E. F. "Recent Investigations into Relational Data Base Systems". IBM Research Report RJ1385 (April 23, 1974). Republished in

Proc. 1974 Congress (Stockholm, Sweden, 1974). New York, N.Y.: North-Holland (1974).
[11][11] Ronald Fagin. "Normal Forms and Relational Database Operators". ACM SIGMOD International Conference on Management of Data, May

31-June 1, 1979, Boston, Mass. Also IBM Research Report RJ2471, Feb. 1979.
[12] Ronald Fagin (1981) A Normal Form for Relational Databases That Is Based on Domains and Keys (http:/ / www. almaden. ibm. com/ cs/

people/ fagin/ tods81. pdf), Communications of the ACM, vol. 6, pp. 387–415
[13] C.J. Date, Hugh Darwen, Nikos Lorentzos. Temporal Data and the Relational Model. Morgan Kaufmann (2002), p. 176

• Paper: "Non First Normal Form Relations" by G. Jaeschke, H. -J Schek ; IBM Heidelberg Scientific Center. ->
Paper studying normalization and denormalization operators nest and unnest as mildly described at the end of this
wiki page.

Further reading
• Litt's Tips: Normalization (http:/ / www. troubleshooters. com/ littstip/ ltnorm. html)
• Date, C. J. (1999), An Introduction to Database Systems (http:/ / www. aw-bc. com/ catalog/ academic/ product/

0,1144,0321197844,00. html) (8th ed.). Addison-Wesley Longman. ISBN 0-321-19784-4.
• Kent, W. (1983) A Simple Guide to Five Normal Forms in Relational Database Theory (http:/ / www. bkent. net/

Doc/ simple5. htm), Communications of the ACM, vol. 26, pp. 120–125
•• H.-J. Schek, P. Pistor Data Structures for an Integrated Data Base Management and Information Retrieval System

http://en.wikipedia.org/w/index.php?title=Bijection
http://en.wikipedia.org/w/index.php?title=Partitioned_Normal_Form
http://en.wikipedia.org/w/index.php?title=Partitioned_Normal_Form
http://www.acm.org/classics/nov95/toc.html
http://www.almaden.ibm.com/cs/people/fagin/tods81.pdf
http://www.almaden.ibm.com/cs/people/fagin/tods81.pdf
http://www.troubleshooters.com/littstip/ltnorm.html
http://www.aw-bc.com/catalog/academic/product/0,1144,0321197844,00.html
http://www.aw-bc.com/catalog/academic/product/0,1144,0321197844,00.html
http://www.bkent.net/Doc/simple5.htm
http://www.bkent.net/Doc/simple5.htm

Database normalization 31

External links
• Database Normalization Basics (http:/ / databases. about. com/ od/ specificproducts/ a/ normalization. htm) by

Mike Chapple (About.com)
• Database Normalization Intro (http:/ / www. databasejournal. com/ sqletc/ article. php/ 1428511), Part 2 (http:/ /

www. databasejournal. com/ sqletc/ article. php/ 26861_1474411_1)
• An Introduction to Database Normalization (http:/ / mikehillyer. com/ articles/

an-introduction-to-database-normalization/) by Mike Hillyer.
• A tutorial on the first 3 normal forms (http:/ / phlonx. com/ resources/ nf3/) by Fred Coulson
• DB Normalization Examples (http:/ / www. dbnormalization. com/)
• Description of the database normalization basics (http:/ / support. microsoft. com/ kb/ 283878) by Microsoft
• Database Normalization and Design Techniques (http:/ / www. barrywise. com/ 2008/ 01/

database-normalization-and-design-techniques/) by Barry Wise, recommended reading for the Harvard MIS.
• A Simple Guide to Five Normal Forms in Relational Database Theory (http:/ / www. bkent. net/ Doc/ simple5.

htm)

Database storage structures
Database tables and indexes may be stored on disk in one of a number of forms, including ordered/unordered flat
files, ISAM, heap files, hash buckets, or B+ trees. Each form has its own particular advantages and disadvantages.
The most commonly used forms are B+ trees and ISAM. Such forms or structures are one aspect of the overall
schema used by a database engine to store information.

Unordered
Unordered storage typically stores the records in the order they are inserted. Such storage offers good insertion
efficiency (), but inefficient retrieval times (). Typically these retrieval times are better, however, as
most databases use indexes on the primary keys, resulting in retrieval times of or for keys that are
the same as the database row offsets within the storage system.

Ordered
Ordered storage typically stores the records in order and may have to rearrange or increase the file size when a new
record is inserted, resulting in lower insertion efficiency. However, ordered storage provides more efficient retrieval
as the records are pre-sorted, resulting in a complexity of .

Structured files

Heap files
•• Simplest and most basic method

•• insert efficient, with new records added at the end of the file, providing chronological order
•• retrieval inefficient as searching has to be linear
•• deletion is accomplished by marking selected records as "deleted"
• requires periodic reorganization if file is very volatile[clarify]

•• Advantages
•• efficient for bulk loading data
•• efficient for relatively small relations as indexing overheads are avoided

http://databases.about.com/od/specificproducts/a/normalization.htm
http://www.databasejournal.com/sqletc/article.php/1428511
http://www.databasejournal.com/sqletc/article.php/26861_1474411_1
http://www.databasejournal.com/sqletc/article.php/26861_1474411_1
http://mikehillyer.com/articles/an-introduction-to-database-normalization/
http://mikehillyer.com/articles/an-introduction-to-database-normalization/
http://phlonx.com/resources/nf3/
http://www.dbnormalization.com/
http://support.microsoft.com/kb/283878
http://www.barrywise.com/2008/01/database-normalization-and-design-techniques/
http://www.barrywise.com/2008/01/database-normalization-and-design-techniques/
http://www.bkent.net/Doc/simple5.htm
http://www.bkent.net/Doc/simple5.htm
http://en.wikipedia.org/w/index.php?title=Flat_file_database
http://en.wikipedia.org/w/index.php?title=Flat_file_database
http://en.wikipedia.org/w/index.php?title=ISAM
http://en.wikipedia.org/w/index.php?title=Hash_table
http://en.wikipedia.org/w/index.php?title=B%2B_tree
http://en.wikipedia.org/w/index.php?title=Database_engine
http://en.wikipedia.org/w/index.php?title=Algorithmic_efficiency
http://en.wikipedia.org/w/index.php?title=Primary_key
http://en.wikipedia.org/wiki/Please_clarify

Database storage structures 32

•• efficient when retrievals involve large proportion of stored records
•• Disadvantages

•• not efficient for selective retrieval using key values, especially if large
•• sorting may be time-consuming
• not suitable for volatile[clarify] tables

Heap files are lists of unordered records of variable size. Although sharing a similar name, heap files are widely
different from in-memory heaps.Wikipedia:Please clarify

Hash buckets
•• Hash functions calculate the address of the page in which the record is to be stored based on one or more fields in

the record
•• hashing functions chosen to ensure that addresses are spread evenly across the address space
• ‘occupancy’ is generally 40% to 60% of the total file size
•• unique address not guaranteed so collision detection and collision resolution mechanisms are required

•• Open addressing
•• Chained/unchained overflow
•• Pros and cons

•• efficient for exact matches on key field
•• not suitable for range retrieval, which requires sequential storage
•• calculates where the record is stored based on fields in the record
•• hash functions ensure even spread of data
•• collisions are possible, so collision detection and restoration is required

B+ trees
These are the most commonly used in practice.
•• Time taken to access any record is the same because the same number of nodes is searched
•• Index is a full index so data file does not have to be ordered
•• Pros and cons

• versatile data structure – sequential as well as random access
•• access is fast
•• supports exact, range, part key and pattern matches efficiently
• volatile files are handled efficiently because index is dynamic – expands and contracts as table grows and

shrinks
• less well suited to relatively stable files – in this case, ISAM is more efficient

Data orientation
Most conventional relational databases use "row-oriented" storage, meaning that all data associated with a given row
is stored together. By contrast, column-oriented DBMS store all data from a given column together in order to more
quickly serve data warehouse-style queries. Correlation databases are similar to row-based databases, but apply a
layer of indirection to map multiple instances of the same value to the same numerical identifier.

http://en.wikipedia.org/wiki/Please_clarify
http://en.wikipedia.org/w/index.php?title=Heap_%28data_structure%29
http://en.wikipedia.org/wiki/Please_clarify
http://en.wikipedia.org/w/index.php?title=Column-oriented_DBMS
http://en.wikipedia.org/w/index.php?title=Data_warehouse
http://en.wikipedia.org/w/index.php?title=Correlation_database

Distributed database 33

Distributed database
A distributed database is a database in which storage devices are not all attached to a common processing unit such
as the CPU, controlled by a distributed database management system (together sometimes called a distributed
database system). It may be stored in multiple computers, located in the same physical location; or may be
dispersed over a network of interconnected computers. Unlike parallel systems, in which the processors are tightly
coupled and constitute a single database system, a distributed database system consists of loosely-coupled sites that
share no physical components.
System administrators can distribute collections of data (e.g. in a database) across multiple physical locations. A
distributed database can reside on network servers on the Internet, on corporate intranets or extranets, or on other
company networks. Because they store data across multiple computers, distributed databases can improve
performance at end-user worksites by allowing transactions to be processed on many machines, instead of being
limited to one.[1]

Two processes ensure that the distributed databases remain up-to-date and current: replication and duplication.
1.1. Replication involves using specialized software that looks for changes in the distributive database. Once the

changes have been identified, the replication process makes all the databases look the same. The replication
process can be complex and time-consuming depending on the size and number of the distributed databases. This
process can also require a lot of time and computer resources.

2. Duplication, on the other hand, has less complexity. It basically identifies one database as a master and then
duplicates that database. The duplication process is normally done at a set time after hours. This is to ensure that
each distributed location has the same data. In the duplication process, users may change only the master
database. This ensures that local data will not be overwritten.

Both replication and duplication can keep the data current in all distributive locations.
Besides distributed database replication and fragmentation, there are many other distributed database design
technologies. For example, local autonomy, synchronous and asynchronous distributed database technologies. These
technologies' implementation can and does depend on the needs of the business and the sensitivity/confidentiality of
the data stored in the database, and hence the price the business is willing to spend on ensuring data security,
consistency and integrity.
When discussing access to distributed databases, Microsoft favors the term distributed query, which it defines in
protocol-specific manner as "[a]ny SELECT, INSERT, UPDATE, or DELETE statement that references tables and
rowsets from one or more external OLE DB data sources". Oracle provides a more language-centric view in which
distributed queries and distributed transactions form part of distributed SQL.

Architecture
A database user accesses the distributed database through:
Local applications

applications which do not require data from other sites.
Global applications

applications which do require data from other sites.
A homogeneous distributed database has identical software and hardware running all databases instances, and may
appear through a single interface as if it were a single database. A heterogeneous distributed database may have
different hardware, operating systems, database management systems, and even data models for different databases.

http://en.wikipedia.org/w/index.php?title=Computer_storage
http://en.wikipedia.org/w/index.php?title=CPU
http://en.wikipedia.org/w/index.php?title=Database_management_system
http://en.wikipedia.org/w/index.php?title=Computers
http://en.wikipedia.org/w/index.php?title=Computer_network
http://en.wikipedia.org/w/index.php?title=Network_servers
http://en.wikipedia.org/w/index.php?title=Internet
http://en.wikipedia.org/w/index.php?title=Intranets
http://en.wikipedia.org/w/index.php?title=Extranets
http://en.wikipedia.org/w/index.php?title=Computer_network
http://en.wikipedia.org/w/index.php?title=End-user
http://en.wikipedia.org/w/index.php?title=Duplication
http://en.wikipedia.org/w/index.php?title=Master-slave_%28technology%29
http://en.wikipedia.org/w/index.php?title=Confidentiality
http://en.wikipedia.org/w/index.php?title=Data_security
http://en.wikipedia.org/w/index.php?title=Data_consistency
http://en.wikipedia.org/w/index.php?title=Data_integrity
http://en.wikipedia.org/w/index.php?title=Microsoft
http://en.wikipedia.org/w/index.php?title=Oracle_Database
http://en.wikipedia.org/w/index.php?title=Distributed_transaction

Distributed database 34

Homogeneous DDBMS
In a homogeneous distributed database all sites have identical software and are aware of each other and agree to
cooperate in processing user requests. Each site surrenders part of its autonomy in terms of right to change schema or
software. A homogeneous DDBMS appears to the user as a single system. The homogeneous system is much easier
to design and manage. The following conditions must be satisfied for homogeneous database:
• The operating system used, at each location must be same or compatible.Wikipedia:Avoid weasel

wordsWikipedia:Please clarify
•• The data structures used at each location must be same or compatible.
•• The database application (or DBMS) used at each location must be same or compatible.

Heterogeneous DDBMS
In a heterogeneous distributed database, different sites may use different schema and software. Difference in schema
is a major problem for query processing and transaction processing. Sites may not be aware of each other and may
provide only limited facilities for cooperation in transaction processing. In heterogeneous systems, different nodes
may have different hardware & software and data structures at various nodes or locations are also incompatible.
Different computers and operating systems, database applications or data models may be used at each of the
locations. For example, one location may have the latest relational database management technology, while another
location may store data using conventional files or old version of database management system. Similarly, one
location may have the Windows NT operating system, while another may have UNIX. Heterogeneous systems are
usually used when individual sites use their own hardware and software. On heterogeneous system, translations are
required to allow communication between different sites (or DBMS). In this system, the users must be able to make
requests in a database language at their local sites. Usually the SQL database language is used for this purpose. If the
hardware is different, then the translation is straightforward, in which computer codes and word-length is changed.
The heterogeneous system is often not technically or economically feasible. In this system, a user at one location
may be able to read but not update the data at another location.

Important considerations
Care with a distributed database must be taken to ensure the following:
• The distribution is transparent — users must be able to interact with the system as if it were one logical system.

This applies to the system's performance, and methods of access among other things.
• Transactions are transparent — each transaction must maintain database integrity across multiple databases.

Transactions must also be divided into sub-transactions, each sub-transaction affecting one database system.
There are two principal approaches to store a relation r in a distributed database system:

A) Replication
B) Fragmentation/Partitioning

A) Replication: In replication, the system maintains several identical replicas of the same relation r in different sites.
•• Data is more available in this scheme.
•• Parallelism is increased when read request is served.
•• Increases overhead on update operations as each site containing the replica needed to be updated in order to

maintain consistency.
• Multi-datacenter replication provides geographical diversity: http:/ / basho. com/ tag/

multi-datacenter-replication/
B) Fragmentation: The relation r is fragmented into several relations r1, r2, r3....rn in such a way that the actual
relation could be reconstructed from the fragments and then the fragments are scattered to different locations. There
are basically two schemes of fragmentation:

http://en.wikipedia.org/wiki/Avoid_weasel_words
http://en.wikipedia.org/wiki/Avoid_weasel_words
http://en.wikipedia.org/wiki/Please_clarify
http://en.wikipedia.org/w/index.php?title=Database_integrity
http://en.wikipedia.org/w/index.php?title=Database_replication
http://basho.com/tag/multi-datacenter-replication/
http://basho.com/tag/multi-datacenter-replication/

Distributed database 35

•• Horizontal fragmentation - splits the relation by assigning each tuple of r to one or more fragments.
•• Vertical fragmentation - splits the relation by decomposing the schema R of relation r.

Advantages
•• Management of distributed data with different levels of transparency like network transparency, fragmentation

transparency, replication transparency, etc.
•• Increase reliability and availability
•• Easier expansion
• Reflects organizational structure — database fragments potentially stored within the departments they relate to
• Local autonomy or site autonomy — a department can control the data about them (as they are the ones familiar

with it)
• Protection of valuable data — if there were ever a catastrophic event such as a fire, all of the data would not be in

one place, but distributed in multiple locations
• Improved performance — data is located near the site of greatest demand, and the database systems themselves

are parallelized, allowing load on the databases to be balanced among servers. (A high load on one module of the
database won't affect other modules of the database in a distributed database)

• Economics — it may cost less to create a network of smaller computers with the power of a single large computer
• Modularity — systems can be modified, added and removed from the distributed database without affecting other

modules (systems)
•• Reliable transactions - due to replication of the database
•• Hardware, operating-system, network, fragmentation, DBMS, replication and location independence
•• Continuous operation, even if some nodes go offline (depending on design)
•• Distributed query processing can improve performance
•• Distributed transaction management
•• Single-site failure does not affect performance of system.
• All transactions follow A.C.I.D. property:

•• A-atomicity, the transaction takes place as a whole or not at all
•• C-consistency, maps one consistent DB state to another
•• I-isolation, each transaction sees a consistent DB
•• D-durability, the results of a transaction must survive system failures

The Merge Replication Method is popularly used to consolidate the data between databases.[citation needed]

Disadvantages
• Complexity — DBAs may have to do extra work to ensure that the distributed nature of the system is transparent.

Extra work must also be done to maintain multiple disparate systems, instead of one big one. Extra database
design work must also be done to account for the disconnected nature of the database — for example, joins
become prohibitively expensive when performed across multiple systems.

• Economics — increased complexity and a more extensive infrastructure means extra labour costs
• Security — remote database fragments must be secured, and they are not centralized so the remote sites must be

secured as well. The infrastructure must also be secured (for example, by encrypting the network links between
remote sites).

• Difficult to maintain integrity — but in a distributed database, enforcing integrity over a network may require too
much of the network's resources to be feasible

• Inexperience — distributed databases are difficult to work with, and in such a young field there is not much
readily available experience in "proper" practice

http://en.wikipedia.org/wiki/Citation_needed
http://en.wikipedia.org/w/index.php?title=Database_administrator
http://en.wikipedia.org/w/index.php?title=Disparate_system

Distributed database 36

• Lack of standards — there are no tools or methodologies yet to help users convert a centralized DBMS into a
distributed DBMS[citation needed]

• Database design more complex — besides of the normal difficulties, the design of a distributed database has to
consider fragmentation of data, allocation of fragments to specific sites and data replication

•• Additional software is required
•• Operating system should support distributed environment
• Concurrency control poses a major issue. It can be solved by locking and timestamping.
•• Distributed access to data
•• Analysis of distributed data

References
[1] O'Brien, J. & Marakas, G.M.(2008) Management Information Systems (pp. 185-189). New York, NY: McGraw-Hill Irwin

• M. T. Özsu and P. Valduriez, Principles of Distributed Databases (3rd edition) (2011), Springer, ISBN
978-1-4419-8833-1

• Elmasri and Navathe, Fundamentals of database systems (3rd edition), Addison-Wesley Longman, ISBN
0-201-54263-3

• Oracle Database Administrator's Guide 10g (Release 1), http:/ / docs. oracle. com/ cd/ B14117_01/ server. 101/
b10739/ ds_concepts. htm

Federated database system
A federated database system is a type of meta-database management system (DBMS), which transparently maps
multiple autonomous database systems into a single federated database. The constituent databases are
interconnected via a computer network and may be geographically decentralized. Since the constituent database
systems remain autonomous, a federated database system is a contrastable alternative to the (sometimes daunting)
task of merging several disparate databases. A federated database, or virtual database, is a composite of all
constituent databases in a federated database system. There is no actual data integration in the constituent disparate
databases as a result of data federation.
McLeod and Heimbigner were among the first to define a federated database system, as one which "define[s] the
architecture and interconnect[s] databases that minimize central authority yet support partial sharing and
coordination among database systems".
Through data abstraction, federated database systems can provide a uniform user interface, enabling users and clients
to store and retrieve data in multiple noncontiguous databases with a single query -- even if the constituent databases
are heterogeneous. To this end, a federated database system must be able to decompose the query into subqueries for
submission to the relevant constituent DBMS's, after which the system must composite the result sets of the
subqueries. Because various database management systems employ different query languages, federated database
systems can apply wrappers to the subqueries to translate them into the appropriate query languages.
• Note: this description of federated databases does not accurately reflect the McLeod/Heimbigner definition of a

federated database. Rather, this description fits what McLeod/Heimbinger called a composite database.
McLeod/Heimbigner's federated database is a collection of autonomous components that make their data
available to other members of the federation through the publication of an export schema and access operations;
there is no unified, central schema that encompasses the information available from the members of the
federation.

Among other surveys, defines a Federated Database as a collection of cooperating component systems which are
autonomous and are possibly heterogeneous. The three important components of an FDBS as pointed out in are

http://en.wikipedia.org/wiki/Citation_needed
http://en.wikipedia.org/w/index.php?title=Lock_%28database%29
http://en.wikipedia.org/w/index.php?title=Timestamp
http://docs.oracle.com/cd/B14117_01/server.101/b10739/ds_concepts.htm
http://docs.oracle.com/cd/B14117_01/server.101/b10739/ds_concepts.htm
http://en.wikipedia.org/w/index.php?title=Meta-
http://en.wikipedia.org/w/index.php?title=Database_management_system
http://en.wikipedia.org/w/index.php?title=Database_management_system
http://en.wikipedia.org/w/index.php?title=Computer_network
http://en.wikipedia.org/w/index.php?title=Data_abstraction
http://en.wikipedia.org/w/index.php?title=User_interface
http://en.wikipedia.org/w/index.php?title=User_%28computing%29
http://en.wikipedia.org/w/index.php?title=Client_%28computing%29
http://en.wikipedia.org/w/index.php?title=Data
http://en.wikipedia.org/w/index.php?title=Information_retrieval
http://en.wikipedia.org/w/index.php?title=Heterogeneous
http://en.wikipedia.org/w/index.php?title=Database_management_system
http://en.wikipedia.org/w/index.php?title=Result_set
http://en.wikipedia.org/w/index.php?title=Wrapper_function
http://en.wikipedia.org/w/index.php?title=Heterogeneous_Database_System

Federated database system 37

autonomy, heterogeneity and distribution. Another dimension which has also been considered is the Networking
Environment Computer Network, e.g., many DBSs over a LAN or many DBSs over a WAN update related functions
of participating DBSs (e.g., no updates, nonatomic transitions, atomic updates).

FDBS architecture
A DBMS can be classified as either centralized or distributed. A centralized system manages a single database while
distributed manages multiple databases. A component DBS in a DBMS may be centralized or distributed. A multiple
DBS (MDBS) can be classified into two types depending on the autonomy of the component DBS as federated and
non federated. A nonfederated database system is an integration of component DBMS that are not autonomous. A
federated database system consists of component DBS that are autonomous yet participate in a federation to allow
partial and controlled sharing of their data.
Federated architectures differ based on levels of integration with the component database systems and the extent of
services offered by the federation. A FDBS can be categorized as loosely or tightly coupled systems.
• Loosely Coupled require component databases to construct their own federated schema. A user will typically

access other component database systems by using a multidatabase language but this removes any levels of
location transparency, forcing the user to have direct knowledge of the federated schema. A user imports the data
they require from other component databases and integrates it with their own to form a federated schema.

•• Tightly coupled system consists of component systems that use independent processes to construct and publicize
an integrated federated schema.

Multiple DBS of which FDBS are a specific type can be characterized along three dimensions: Distribution,
Heterogeneity and Autonomy. Another characterization could be based on the dimension of networking, for example
single databases or multiple databases in a LAN or WAN.

Distribution
Distribution of data in an FDBS is due to the existence of a multiple DBS before an FDBS is built. Data can be
distributed among multiple DB which could be stored in a single computer or multiple computers. These computers
could be geographically located in different places but interconnected by a network. The benefits of data distribution
help in increased availability and reliability as well as improved access times.

Heterogeneity

Heterogeneities in databases arise due to factors such as differences in structures, semantics of data, the constraints
supported or query language. Differences in structure occur when two data models provide different primitives such
as object oriented (OO) models that support specialization and inheritance and relational models that do not.
Differences due to constraints occur when two models support two different constraints. For example the set type in
CODASYL schema may be partially modeled as a referential integrity constraint in a relationship schema.
CODASYL supports insertion and retention that are not captured by referential integrity alone. The query language
supported by one DBMS can also contribute to heterogeneity between other component DBMSs. For example,
differences in query languages with the same data models or different versions of query languages could contribute
to heterogeneity.
Semantic heterogeneities arise when there is a disagreement about meaning, interpretation or intended use of data. At
the schema and data level, classification of possible heterogeneities include:
• Naming conflicts e.g. databases using different names to represent the same concept.
• Domain conflicts or data representation conflicts e.g. databases using different values to represent same concept.
• Precision conflicts e.g. databases using same data values from domains of different cardinalities for same data.
• Metadata conflicts e.g. same concepts are represented at schema level and instance level.

http://en.wikipedia.org/w/index.php?title=Heterogeneous_Database_System
http://en.wikipedia.org/w/index.php?title=Computer_Network
http://en.wikipedia.org/w/index.php?title=Local_Area_Network
http://en.wikipedia.org/w/index.php?title=Wide_Area_Network
http://en.wikipedia.org/w/index.php?title=Atomicity_%28database_systems%29
http://en.wikipedia.org/w/index.php?title=Database_management_system
http://en.wikipedia.org/w/index.php?title=Database_management_system
http://en.wikipedia.org/w/index.php?title=Database_schema
http://en.wikipedia.org/w/index.php?title=Local_Area_Network
http://en.wikipedia.org/w/index.php?title=Wide_Area_Network
http://en.wikipedia.org/w/index.php?title=Data_model
http://en.wikipedia.org/w/index.php?title=Object-Oriented_Modeling
http://en.wikipedia.org/w/index.php?title=CODASYL
http://en.wikipedia.org/w/index.php?title=Database_schema
http://en.wikipedia.org/w/index.php?title=CODASYL
http://en.wikipedia.org/w/index.php?title=Database_management_system
http://en.wikipedia.org/w/index.php?title=Heterogeneous_Database_System
http://en.wikipedia.org/w/index.php?title=Database_management_system
http://en.wikipedia.org/w/index.php?title=Data_model
http://en.wikipedia.org/w/index.php?title=Heterogeneous_Database_System
http://en.wikipedia.org/w/index.php?title=Data
http://en.wikipedia.org/w/index.php?title=Data
http://en.wikipedia.org/w/index.php?title=Cardinality
http://en.wikipedia.org/w/index.php?title=Data
http://en.wikipedia.org/w/index.php?title=Metadata
http://en.wikipedia.org/w/index.php?title=Database_schema

Federated database system 38

• Data conflicts e.g. missing attributes
• Schema conflicts e.g. table versus table conflict which includes naming conflicts, data conflicts etc.
In creating a federated schema, one has to resolve such heterogeneities before integrating the component DB
schemas.

Schema matching, schema mapping

Dealing with incompatible data types or query syntax is not the only obstacle to a concrete implementation of an
FDBS. In systems that are not planned top-down, a generic problem lies in matching semantically equivalent, but
differently named parts from different schemas (=data models) (tables, attributes). A pairwise mapping between n
attributes would result in mapping rules (given equivalence mappings) - a number that quickly gets too

large for practical purposes. A common way out is to provide a global schema that comprises the relevant parts of all
member schemas and provide mappings in the form of database views. Two principal solutions can be realized,
depending on the direction of the mapping:
1.1. Global as View (GaV): the global schema is defined in terms of the underlying schemas
2.2. Local as View (LaV): the local schemas are defined in terms of the global schema
Both are explained in more detail in the article Data integration. Alternate approaches to the schema matching
problem and a classification of the same are explained in more detail in the article Schema Matching

Autonomy
Fundamental to the difference between an MDBS and an FDBS is the concept of autonomy. It is important to
understand the aspects of autonomy for component databases and how they can be addressed when a component
DBS participates in an FDBS. There are four kinds of autonomies addressed:
•• Design Autonomy which refers to ability to choose its design irrespective of data, query language or

conceptualization, functionality of the system implementation.
Heterogeneities in an FDBS are primarily due to design autonomy.
• Communication autonomy refers to the general operation of the DBMS to communicate with other DBMS or not.
•• Execution autonomy allows a component DBMS to control the operations requested by local and external

operations.
• Association autonomy gives a power to component DBS to disassociate itself from a federation which means

FDBS can operate independently of any single DBS.
The ANSI/X3/SPARC Study Group outlined a three level data description architecture, the components of which are
the conceptual schema, internal schema and external schema of databases. The three level architecture is however
inadequate to describing the architectures of an FDBS. It was therefore extended to support the three dimensions of
the FDBS namely Distribution, Autonomy and Heterogeneity. The five level schema architecture is explained below.

Concurrency control
The Heterogeneity and Autonomy requirements pose special challenges concerning concurrency control in an FDBS,
which is crucial for the correct execution of its concurrent transactions (see also Global concurrency control).
Achieving global serializability, the major correctness criterion, under these requirements has been characterized as
very difficult and unsolved. Commitment ordering, introduced in 1991, has provided a general solution for this issue
(See Global serializability; See Commitment ordering also for the architectural aspects of the solution).

http://en.wikipedia.org/w/index.php?title=Data
http://en.wikipedia.org/w/index.php?title=Attribute_%28computing%29
http://en.wikipedia.org/w/index.php?title=Database_schema
http://en.wikipedia.org/w/index.php?title=Semantic_equivalence
http://en.wikipedia.org/w/index.php?title=Logical_schema
http://en.wikipedia.org/w/index.php?title=Database_view
http://en.wikipedia.org/w/index.php?title=Data_integration
http://en.wikipedia.org/w/index.php?title=Schema_Matching
http://en.wikipedia.org/w/index.php?title=Heterogeneous_Database_System
http://en.wikipedia.org/w/index.php?title=Database_management_system
http://en.wikipedia.org/w/index.php?title=Global_concurrency_control
http://en.wikipedia.org/w/index.php?title=Global_serializability
http://en.wikipedia.org/w/index.php?title=Commitment_ordering
http://en.wikipedia.org/w/index.php?title=Global_serializability
http://en.wikipedia.org/w/index.php?title=Commitment_ordering

Federated database system 39

Five Level Schema Architecture for FDBSs
The five level schema architecture includes the following:
•• Local Schema is the conceptual concept expressed in primary data model of component DBMS.
•• Component Schema is derived by translating local schema into a model called the canonical data model or

common data model. They are useful when semantics missed in local schema are incorporated in the component.
They help in integration of data for tightly coupled FDBS.

•• Export Schema represents a subset of a component schema that is available to the FDBS. It may include access
control information regarding its use by specific federation user. The export schema help in managing flow of
control of data.

•• Federated Schema is an integration of multiple export schema. It includes information on data distribution that is
generated when integrating export schemas.

•• External Schema defines a schema for a user/applications or a class of users/applications.
While accurately representing the state of the art in data integration, the Five Level Schema Architecture above does
suffer from a major drawback, namely IT imposed look and feel. Modern data users demand control over how data is
presented; their needs are somewhat in conflict with such bottom-up approaches to data integration.

References

External links
• Schema coordination in federated database management: a comparison with schema integration (http:/ / citeseer.

ist. psu. edu/ cache/ papers/ cs/ 9149/ http:zSzzSzwww. bm. ust. hkzSz~zhaozSzDSS96. pdf/
schema-coordination-in-federated. pdf)

• Storage of Behaviour of Object Database (http:/ / www. computing. dcu. ie/ ~dalenk/ publications/ PhD Transfer
talk. ppt)

• DB2 and Federated Databases (http:/ / www. ibm. com/ developerworks/ db2/ library/ techarticle/
dm-0504zikopoulos/)

• Tutorial on Federated Database (http:/ / www. vldb. org/ conf/ 1991/ P489. PDF)
• GaV and LaV explained (http:/ / www. dcs. bbk. ac. uk/ ~lucas/ talks/ SCSIS_RD_200507. pps)
• Issues of where to perform the join aka "pushdown" and other performance characteristics (http:/ / www. ibm.

com/ developerworks/ db2/ library/ techarticle/ 0304lurie/ 0304lurie. html)
• Worked example federating Oracle, Informix, DB2, and Excel (http:/ / www. ibm. com/ developerworks/ db2/

library/ techarticle/ 0307lurie/ 0307lurie. html)
• Composite Information Server - a commercial federated database product (http:/ / www. compositesw. com/

products/ cis. shtml)
• Freitas, André, Edward Curry, João Gabriel Oliveira, and Sean O’Riain. 2012. “Querying Heterogeneous Datasets

on the Linked Data Web: Challenges, Approaches, and Trends.” (http:/ / www. edwardcurry. org/ publications/
freitas_IC_12. pdf) IEEE Internet Computing 16 (1): 24–33.

• IBM Gaian Database: A dynamic Distributed Federated Database (https:/ / www. ibm. com/ developerworks/
community/ groups/ service/ html/ communityview?communityUuid=f6ce657b-f385-43b2-8350-458e6e4a344f)

• Federated system and methods and mechanisms of implementing and using such a system (http:/ / www. google.
com/ patents/ US7392255)

http://citeseer.ist.psu.edu/cache/papers/cs/9149/http:zSzzSzwww.bm.ust.hkzSz~zhaozSzDSS96.pdf/schema-coordination-in-federated.pdf
http://citeseer.ist.psu.edu/cache/papers/cs/9149/http:zSzzSzwww.bm.ust.hkzSz~zhaozSzDSS96.pdf/schema-coordination-in-federated.pdf
http://citeseer.ist.psu.edu/cache/papers/cs/9149/http:zSzzSzwww.bm.ust.hkzSz~zhaozSzDSS96.pdf/schema-coordination-in-federated.pdf
http://www.computing.dcu.ie/~dalenk/publications/PhD%20Transfer%20talk.ppt
http://www.computing.dcu.ie/~dalenk/publications/PhD%20Transfer%20talk.ppt
http://www.ibm.com/developerworks/db2/library/techarticle/dm-0504zikopoulos/
http://www.ibm.com/developerworks/db2/library/techarticle/dm-0504zikopoulos/
http://www.vldb.org/conf/1991/P489.PDF
http://www.dcs.bbk.ac.uk/~lucas/talks/SCSIS_RD_200507.pps
http://www.ibm.com/developerworks/db2/library/techarticle/0304lurie/0304lurie.html
http://www.ibm.com/developerworks/db2/library/techarticle/0304lurie/0304lurie.html
http://www.ibm.com/developerworks/db2/library/techarticle/0307lurie/0307lurie.html
http://www.ibm.com/developerworks/db2/library/techarticle/0307lurie/0307lurie.html
http://www.compositesw.com/products/cis.shtml
http://www.compositesw.com/products/cis.shtml
http://www.edwardcurry.org/publications/freitas_IC_12.pdf
http://www.edwardcurry.org/publications/freitas_IC_12.pdf
https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=f6ce657b-f385-43b2-8350-458e6e4a344f
https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=f6ce657b-f385-43b2-8350-458e6e4a344f
http://www.google.com/patents/US7392255
http://www.google.com/patents/US7392255

Referential integrity 40

Referential integrity

An example of a database that has not enforced referential integrity. In this example,
there is a foreign key (artist_id) value in the album table that references a

non-existent artist — in other words there is a foreign key value with no corresponding
primary key value in the referenced table. What happened here was that there was an

artist called "Aerosmith", with an artist_id of 4, which was deleted from the artist
table. However, the album "Eat the Rich" referred to this artist. With referential integrity

enforced, this would not have been possible.

Referential integrity is a property of
data which, when satisfied, requires
every value of one attribute (column)
of a relation (table) to exist as a value
of another attribute in a different (or
the same) relation (table).

For referential integrity to hold in a
relational database, any field in a table
that is declared a foreign key can
contain either a null value, or only
values from a parent table's primary
key or a candidate key.[1] In other
words, when a foreign key value is
used it must reference a valid, existing
primary key in the parent table. For
instance, deleting a record that
contains a value referred to by a
foreign key in another table would
break referential integrity. Some
relational database management
systems (RDBMS) can enforce
referential integrity, normally either by
deleting the foreign key rows as well to
maintain integrity, or by returning an error and not performing the delete. Which method is used may be determined
by a referential integrity constraint defined in a data dictionary.

Formalization

An inclusion dependency over two (possibly identical) predicates and from a schema is written
, where the , are distinct attributes (column names) of and . It

implies that the tuples of values appearing in columns for facts of must also appear as a tuple of
values in columns for some fact of .
Logical implication between inclusion dependencies can be axiomatized by inference rules [2] and can be decided by
a PSPACE algorithm. The problem can be shown to be PSPACE-complete by reduction from the acceptance
problem for a linear bounded automaton.[3] However, logical implication between dependencies that can be inclusion
dependencies or functional dependencies is undecidable by reduction from the word problem for monoids.[4]

http://en.wikipedia.org/w/index.php?title=Primary_key
http://en.wikipedia.org/w/index.php?title=Aerosmith
http://en.wikipedia.org/w/index.php?title=Eat_the_Rich_%28Aerosmith_song%29
http://en.wikipedia.org/w/index.php?title=File%3AReferential_integrity_broken.png
http://en.wikipedia.org/w/index.php?title=Primary_key
http://en.wikipedia.org/w/index.php?title=Primary_key
http://en.wikipedia.org/w/index.php?title=Decidable_language
http://en.wikipedia.org/w/index.php?title=PSPACE
http://en.wikipedia.org/w/index.php?title=PSPACE-complete
http://en.wikipedia.org/w/index.php?title=Linear_bounded_automaton
http://en.wikipedia.org/w/index.php?title=Functional_dependencies
http://en.wikipedia.org/w/index.php?title=Word_problem_%28computability%29
http://en.wikipedia.org/w/index.php?title=Monoids

Referential integrity 41

References
[1][1] Coronel et al. (2013). Database Systems 10th ed. Cengage Learning, ISBN 978-1-111-96960-8
[2] Abiteboul, Hull, Vianu. Foundations of Databases Addison-Wesley, 1994. Section 9.1, p. 193. Freely available online (http:/ / webdam. inria.

fr/ Alice/).
[3][3] ibid., p. 196
[4][4] ibid., p. 199

Relational algebra
In computer science, relational algebra is an offshoot of first-order logic and of algebra of sets concerned with
operations over finitary relations, usually made more convenient to work with by identifying the components of a
tuple by a name (called attribute) rather than by a numeric column index, which is called a relation in database
terminology.
The main application of relational algebra is providing a theoretical foundation for relational databases, particularly
query languages for such databases, chief among which is SQL.

Introduction
Relational algebra received little attention outside of pure mathematics until the publication of E.F. Codd's relational
model of data in 1970. Codd proposed such an algebra as a basis for database query languages. (See section
Implementations.)
Both a named and an unnamed perspective are possible for relational algebra, depending on whether the tuples are
endowed with component names or not. In the unnamed perspective, a tuple is simply a member of a Cartesian
product. In the named perspective, tuples are functions from a finite set U of attributes (of the relation) to a domain
of values (assumed distinct from U).[1] The relational algebras obtained from the two perspectives are equivalent.[2]

The typical undergraduate textbooks present only the named perspective though, and this article follows suit.
Relational algebra is essentially equivalent in expressive power to relational calculus (and thus first-order logic); this
result is known as Codd's theorem. One must be careful to avoid a mismatch that may arise between the two
languages because negation, applied to a formula of the calculus, constructs a formula that may be true on an infinite
set of possible tuples, while the difference operator of relational algebra always returns a finite result. To overcome
these difficulties, Codd restricted the operands of relational algebra to finite relations only and also proposed
restricted support for negation (NOT) and disjunction (OR). Analogous restrictions are found in many other
logic-based computer languages. Codd defined the term relational completeness to refer to a language that is
complete with respect to first-order predicate calculus apart from the restrictions he proposed. In practice the
restrictions have no adverse effect on the applicability of his relational algebra for database purposes.

Primitive operations
As in any algebra, some operators are primitive and the others are derived in terms of the primitive ones. It is useful
if the choice of primitive operators parallels the usual choice of primitive logical operators.
Five primitive operators of Codd's algebra are the selection, the projection, the Cartesian product (also called the
cross product or cross join), the set union, and the set difference. Another operator, rename was not noted by Codd,
but the need for it is shown by the inventors of ISBL. These six operators are fundamental in the sense that omitting
any one of them causes a loss of expressive power. Many other operators have been defined in terms of these six.
Among the most important are set intersection, division, and the natural join. In fact ISBL made a compelling case
for replacing the Cartesian product with the natural join, of which the Cartesian product is a degenerate case.

http://en.wikipedia.org/w/index.php?title=Serge_Abiteboul
http://en.wikipedia.org/w/index.php?title=Richard_B._Hull
http://en.wikipedia.org/w/index.php?title=Victor_Vianu
http://webdam.inria.fr/Alice/
http://webdam.inria.fr/Alice/
http://en.wikipedia.org/w/index.php?title=Computer_science
http://en.wikipedia.org/w/index.php?title=First-order_logic
http://en.wikipedia.org/w/index.php?title=Algebra_of_sets
http://en.wikipedia.org/w/index.php?title=Operation_%28mathematics%29
http://en.wikipedia.org/w/index.php?title=Finitary_relation
http://en.wikipedia.org/w/index.php?title=Tuple
http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=Edgar_F._Codd
http://en.wikipedia.org/w/index.php?title=Tuple
http://en.wikipedia.org/w/index.php?title=Cartesian_product
http://en.wikipedia.org/w/index.php?title=Cartesian_product
http://en.wikipedia.org/w/index.php?title=Tuple%23Relational_model
http://en.wikipedia.org/w/index.php?title=First-order_logic
http://en.wikipedia.org/w/index.php?title=Codd%27s_theorem
http://en.wikipedia.org/w/index.php?title=Tuple
http://en.wikipedia.org/w/index.php?title=Selection_%28relational_algebra%29
http://en.wikipedia.org/w/index.php?title=Projection_%28relational_algebra%29
http://en.wikipedia.org/w/index.php?title=Cartesian_product
http://en.wikipedia.org/w/index.php?title=Set_union
http://en.wikipedia.org/w/index.php?title=Set_difference
http://en.wikipedia.org/w/index.php?title=Rename_%28relational_algebra%29
http://en.wikipedia.org/w/index.php?title=ISBL
http://en.wikipedia.org/w/index.php?title=Set_intersection

Relational algebra 42

Altogether, the operators of relational algebra have an expressive power identical to that of domain relational
calculus or tuple relational calculus. However, for the reasons given in section Introduction, relational algebra is less
expressive than first-order predicate calculus without function symbols. Relational algebra corresponds to a subset of
first-order logic, namely Horn clauses without recursion and negation.

Set operators
The relational algebra uses set union, set difference, and Cartesian product from set theory, but adds additional
constraints to these operators.
For set union and set difference, the two relations involved must be union-compatible—that is, the two relations
must have the same set of attributes. Because set intersection can be defined in terms of set difference, the two
relations involved in set intersection must also be union-compatible.
For the Cartesian product to be defined, the two relations involved must have disjoint headers—that is, they must not
have a common attribute name.
In addition, the Cartesian product is defined differently from the one in set theory in the sense that tuples are
considered to be "shallow" for the purposes of the operation. That is, the Cartesian product of a set of n-tuples with a
set of m-tuples yields a set of "flattened" (n + m)-tuples (whereas basic set theory would have prescribed a set of
2-tuples, each containing an n-tuple and an m-tuple). More formally, R × S is defined as follows:

R × S = {(r1, r2, ..., rn, s1, s2, ..., sm) | (r1, r2, ..., rn) ∈ R, (s1, s2, ..., sm) ∈ S}
The cardinality of the Cartesian product is the product of the cardinalities of its factors, i.e., |R × S| = |R| × |S|.

Projection (π)

A projection is a unary operation written as where is a set of attribute names. The result
of such projection is defined as the set that is obtained when all tuples in R are restricted to the set .
This specifies the specific subset of columns (attributes of each tuple) to be retrieved. To obtain the names and phone
numbers from an address book, the projection might be written

. The result of that projection would be a relation which
contains only the contactName and contactPhoneNumber attributes for each unique entry in addressBook.

Selection (σ)

A generalized selection is a unary operation written as where is a propositional formula that consists of
atoms as allowed in the normal selection and the logical operators (and), (or) and (negation). This
selection selects all those tuples in R for which holds.
To obtain a listing of all friends or business associates in an address book, the selection might be written as

. The result would be a relation containing every
attribute of every unique record where isFriend is true or where isBusinessContact is true.
In Codd's 1970 paper, selection is called restriction.

http://en.wikipedia.org/w/index.php?title=Domain_relational_calculus
http://en.wikipedia.org/w/index.php?title=Domain_relational_calculus
http://en.wikipedia.org/w/index.php?title=Tuple_relational_calculus
http://en.wikipedia.org/w/index.php?title=First-order_predicate_calculus
http://en.wikipedia.org/w/index.php?title=First-order_logic
http://en.wikipedia.org/w/index.php?title=Horn_clause
http://en.wikipedia.org/w/index.php?title=Set_union
http://en.wikipedia.org/w/index.php?title=Set_difference
http://en.wikipedia.org/w/index.php?title=Cartesian_product
http://en.wikipedia.org/w/index.php?title=Set_theory
http://en.wikipedia.org/w/index.php?title=Set_of_attributes
http://en.wikipedia.org/w/index.php?title=Set_intersection
http://en.wikipedia.org/w/index.php?title=Attribute_name
http://en.wikipedia.org/w/index.php?title=Set_%28mathematics%29
http://en.wikipedia.org/w/index.php?title=Unary_operation
http://en.wikipedia.org/w/index.php?title=Set_%28mathematics%29
http://en.wikipedia.org/w/index.php?title=Tuple
http://en.wikipedia.org/w/index.php?title=Unary_operation
http://en.wikipedia.org/w/index.php?title=Propositional_formula
http://en.wikipedia.org/w/index.php?title=Atomic_formula
http://en.wikipedia.org/w/index.php?title=Selection_%28relational_algebra%29
http://en.wikipedia.org/w/index.php?title=Logical_conjunction
http://en.wikipedia.org/w/index.php?title=Logical_disjunction
http://en.wikipedia.org/w/index.php?title=Negation
http://en.wikipedia.org/w/index.php?title=Tuple

Relational algebra 43

Rename (ρ)

A rename is a unary operation written as where the result is identical to R except that the b attribute in all
tuples is renamed to an a attribute. This is simply used to rename the attribute of a relation or the relation itself.
To rename the 'isFriend' attribute to 'isBusinessContact' in a relation,
might be used.

Joins and join-like operators

Natural join (⋈)
Natural join () is a binary operator that is written as (R S) where R and S are relations.[3] The result of the
natural join is the set of all combinations of tuples in R and S that are equal on their common attribute names. For an
example consider the tables Employee and Dept and their natural join:

Name EmpId DeptName

Harry 3415 Finance

Sally 2241 Sales

George 3401 Finance

Harriet 2202 Sales

DeptName Manager

Finance George

Sales Harriet

Production Charles

Name EmpId DeptName Manager

Harry 3415 Finance George

Sally 2241 Sales Harriet

George 3401 Finance George

Harriet 2202 Sales Harriet

This can also be used to define composition of relations. For example, the composition of Employee and Dept is their
join as shown above, projected on all but the common attribute DeptName. In category theory, the join is precisely
the fiber product.
The natural join is arguably one of the most important operators since it is the relational counterpart of logical AND.
Note carefully that if the same variable appears in each of two predicates that are connected by AND, then that
variable stands for the same thing and both appearances must always be substituted by the same value. In particular,
natural join allows the combination of relations that are associated by a foreign key. For example, in the above
example a foreign key probably holds from Employee.DeptName to Dept.DeptName and then the natural join of
Employee and Dept combines all employees with their departments. Note that this works because the foreign key
holds between attributes with the same name. If this is not the case such as in the foreign key from Dept.manager to
Employee.Name then we have to rename these columns before we take the natural join. Such a join is sometimes also
referred to as an equijoin (see θ-join).
More formally the semantics of the natural join are defined as follows:

where Fun is a predicate that is true for a relation r if and only if r is a function. It is usually required that R and S
must have at least one common attribute, but if this constraint is omitted, and R and S have no common attributes,
then the natural join becomes exactly the Cartesian product.
The natural join can be simulated with Codd's primitives as follows. Assume that c1,...,cm are the attribute names
common to R and S, r1,...,rn are the attribute names unique to R and s1,...,sk are the attribute unique to S. Furthermore
assume that the attribute names x1,...,xm are neither in R nor in S. In a first step we can now rename the common
attribute names in S:

Then we take the Cartesian product and select the tuples that are to be joined:

http://en.wikipedia.org/w/index.php?title=Unary_operation
http://en.wikipedia.org/w/index.php?title=Binary_relation
http://en.wikipedia.org/w/index.php?title=Composition_of_relations
http://en.wikipedia.org/w/index.php?title=Category_theory
http://en.wikipedia.org/w/index.php?title=Fiber_product
http://en.wikipedia.org/w/index.php?title=Predicate_%28mathematics%29
http://en.wikipedia.org/w/index.php?title=Relation_%28mathematics%29
http://en.wikipedia.org/w/index.php?title=If_and_only_if

Relational algebra 44

Finally we take a projection to get rid of the renamed attributes:

θ-join and equijoin
Consider tables Car and Boat which list models of cars and boats and their respective prices. Suppose a customer
wants to buy a car and a boat, but she does not want to spend more money for the boat than for the car. The θ-join (

θ) on the relation CarPrice ≥ BoatPrice produces a table with all the possible options. When using a condition
where the attributes are equal, for example Price, then the condition may be specified as Price=Price or alternatively
(Price) itself.

CarModel CarPrice

CarA 20,000

CarB 30,000

CarC 50,000

BoatModel BoatPrice

Boat1 10,000

Boat2 40,000

Boat3 60,000

CarModel CarPrice BoatModel BoatPrice

CarA 20,000 Boat1 10,000

CarB 30,000 Boat1 10,000

CarC 50,000 Boat1 10,000

CarC 50,000 Boat2 40,000

If we want to combine tuples from two relations where the combination condition is not simply the equality of
shared attributes then it is convenient to have a more general form of join operator, which is the θ-join (or
theta-join). The θ-join is a binary operator that is written as or where a and b are attribute

names, θ is a binary relation in the set {<, ≤, =, >, ≥}, v is a value constant, and R and S are relations. The result of
this operation consists of all combinations of tuples in R and S that satisfy the relation θ. The result of the θ-join is
defined only if the headers of S and R are disjoint, that is, do not contain a common attribute.
The simulation of this operation in the fundamental operations is therefore as follows:

R θ S = σθ(R × S)
In case the operator θ is the equality operator (=) then this join is also called an equijoin.
Note, however, that a computer language that supports the natural join and rename operators does not need θ-join as
well, as this can be achieved by selection from the result of a natural join (which degenerates to Cartesian product
when there are no shared attributes).

Semijoin (⋉)(⋊)
The left semijoin is joining similar to the natural join and written as R S where R and S are relations.[4] The result
of this semijoin is the set of all tuples in R for which there is a tuple in S that is equal on their common attribute
names. For an example consider the tables Employee and Dept and their semi join:

Name EmpId DeptName

Harry 3415 Finance

Sally 2241 Sales

George 3401 Finance

Harriet 2202 Production

DeptName Manager

Sales Bob

Sales Thomas

Production Katie

Production Mark

Name EmpId DeptName

Sally 2241 Sales

Harriet 2202 Production

More formally the semantics of the semijoin is defined as follows:
R S = { t R, s S, Fun (t s) }

http://en.wikipedia.org/w/index.php?title=Binary_relation

Relational algebra 45

where Fun(r) is as in the definition of natural join.
The semijoin can be simulated using the natural join as follows. If a1, ..., an are the attribute names of R, then

R S = a1,..,an(R S).
Since we can simulate the natural join with the basic operators it follows that this also holds for the semijoin.

Antijoin (▷)
The antijoin, written as R S where R and S are relations, is similar to the semijoin, but the result of an antijoin is
only those tuples in R for which there is no tuple in S that is equal on their common attribute names.[5]

For an example consider the tables Employee and Dept and their antijoin:

Name EmpId DeptName

Harry 3415 Finance

Sally 2241 Sales

George 3401 Finance

Harriet 2202 Production

DeptName Manager

Sales Sally

Production Harriet

Name EmpId DeptName

Harry 3415 Finance

George 3401 Finance

The antijoin is formally defined as follows:
R S = { t : t R s S : Fun (t s) }

or
R S = { t : t R, there is no tuple s of S that satisfies Fun (t s) }

where Fun(r) is as in the definition of natural join.
The antijoin can also be defined as the complement of the semijoin, as follows:

R S = R − R S
Given this, the antijoin is sometimes called the anti-semijoin, and the antijoin operator is sometimes written as
semijoin symbol with a bar above it, instead of .

Division (÷)
The division is a binary operation that is written as R ÷ S. The result consists of the restrictions of tuples in R to the
attribute names unique to R, i.e., in the header of R but not in the header of S, for which it holds that all their
combinations with tuples in S are present in R. For an example see the tables Completed, DBProject and their
division:

Student Task

Fred Database1

Fred Database2

Fred Compiler1

Eugene Database1

Eugene Compiler1

Sarah Database1

Sarah Database2

Task

Database1

Database2

Student

Fred

Sarah

http://en.wikipedia.org/w/index.php?title=Complement_%28set_theory%29

Relational algebra 46

If DBProject contains all the tasks of the Database project, then the result of the division above contains exactly the
students who have completed both of the tasks in the Database project.
More formally the semantics of the division is defined as follows:

R ÷ S = { t[a1,...,an] : t R s S ((t[a1,...,an] s) R) }
where {a1,...,an} is the set of attribute names unique to R and t[a1,...,an] is the restriction of t to this set. It is usually
required that the attribute names in the header of S are a subset of those of R because otherwise the result of the
operation will always be empty.
The simulation of the division with the basic operations is as follows. We assume that a1,...,an are the attribute names
unique to R and b1,...,bm are the attribute names of S. In the first step we project R on its unique attribute names and
construct all combinations with tuples in S:

T := πa1,...,an(R) × S
In the prior example, T would represent a table such that every Student (because Student is the unique key / attribute
of the Completed table) is combined with every given Task. So Eugene, for instance, would have two rows, Eugene
-> Database1 and Eugene -> Database2 in T.
In the next step we subtract R from this relation:

U := T − R
Note that in U we have the possible combinations that "could have" been in R, but weren't. So if we now take the
projection on the attribute names unique to R then we have the restrictions of the tuples in R for which not all
combinations with tuples in S were present in R:

V := πa1,...,an(U)
So what remains to be done is take the projection of R on its unique attribute names and subtract those in V:

W := πa1,...,an(R) − V

Common extensions
In practice the classical relational algebra described above is extended with various operations such as outer joins,
aggregate functions and even transitive closure.

Outer joins
Whereas the result of a join (or inner join) consists of tuples formed by combining matching tuples in the two
operands, an outer join contains those tuples and additionally some tuples formed by extending an unmatched tuple
in one of the operands by "fill" values for each of the attributes of the other operand. Note that outer joins are not
considered part of the classical relational algebra discussed so far.
The operators defined in this section assume the existence of a null value, ω, which we do not define, to be used for
the fill values; in practice this corresponds to the NULL in SQL. In order to make subsequent selection operations on
the resulting table meaningful, a semantic meaning needs to be assigned to nulls; in Codd's approach the
propositional logic used by the selection is extended to a three-valued logic, although we elide those details in this
article.
Three outer join operators are defined: left outer join, right outer join, and full outer join. (The word "outer" is
sometimes omitted.)

http://en.wikipedia.org/w/index.php?title=Null_%28SQL%29%23Comparisons_with_NULL_and_the_three-valued_logic_.283VL.29

Relational algebra 47

Left outer join (⟕)
The left outer join is written as R ⟕ S where R and S are relations.[6] The result of the left outer join is the set of all
combinations of tuples in R and S that are equal on their common attribute names, in addition (loosely speaking) to
tuples in R that have no matching tuples in S.
For an example consider the tables Employee and Dept and their left outer join:

Name EmpId DeptName

Harry 3415 Finance

Sally 2241 Sales

George 3401 Finance

Harriet 2202 Sales

Tim 1123 Executive

DeptName Manager

Sales Harriet

Production Charles

Name EmpId DeptName Manager

Harry 3415 Finance ω

Sally 2241 Sales Harriet

George 3401 Finance ω

Harriet 2202 Sales Harriet

Tim 1123 Executive ω

In the resulting relation, tuples in S which have no common values in common attribute names with tuples in R take
a null value, ω.
Since there are no tuples in Dept with a DeptName of Finance or Executive, ωs occur in the resulting relation where
tuples in Employee have a DeptName of Finance or Executive.
Let r1, r2, ..., rn be the attributes of the relation R and let {(ω, ..., ω)} be the singleton relation on the attributes that
are unique to the relation S (those that are not attributes of R). Then the left outer join can be described in terms of
the natural join (and hence using basic operators) as follows:

Right outer join (⟖)
The right outer join behaves almost identically to the left outer join, but the roles of the tables are switched.
The right outer join of relations R and S is written as R ⟖ S.[7] The result of the right outer join is the set of all
combinations of tuples in R and S that are equal on their common attribute names, in addition to tuples in S that have
no matching tuples in R.
For example consider the tables Employee and Dept and their right outer join:

Name EmpId DeptName

Harry 3415 Finance

Sally 2241 Sales

George 3401 Finance

Harriet 2202 Sales

Tim 1123 Executive

DeptName Manager

Sales Harriet

Production Charles

Name EmpId DeptName Manager

Sally 2241 Sales Harriet

Harriet 2202 Sales Harriet

ω ω Production Charles

In the resulting relation, tuples in R which have no common values in common attribute names with tuples in S take
a null value, ω.
Since there are no tuples in Employee with a DeptName of Production, ωs occur in the Name attribute of the
resulting relation where tuples in DeptName had tuples of Production.
Let s1, s2, ..., sn be the attributes of the relation S and let {(ω, ..., ω)} be the singleton relation on the attributes that
are unique to the relation R (those that are not attributes of S). Then, as with the left outer join, the right outer join

Relational algebra 48

can be simulated using the natural join as follows:

Full outer join (⟗)
The outer join or full outer join in effect combines the results of the left and right outer joins.
The full outer join is written as R ⟗ S where R and S are relations.[8] The result of the full outer join is the set of all
combinations of tuples in R and S that are equal on their common attribute names, in addition to tuples in S that have
no matching tuples in R and tuples in R that have no matching tuples in S in their common attribute names.
For an example consider the tables Employee and Dept and their full outer join:

Name EmpId DeptName

Harry 3415 Finance

Sally 2241 Sales

George 3401 Finance

Harriet 2202 Sales

Tim 1123 Executive

DeptName Manager

Sales Harriet

Production Charles

Name EmpId DeptName Manager

Harry 3415 Finance ω

Sally 2241 Sales Harriet

George 3401 Finance ω

Harriet 2202 Sales Harriet

Tim 1123 Executive ω

ω ω Production Charles

In the resulting relation, tuples in R which have no common values in common attribute names with tuples in S take
a null value, ω. Tuples in S which have no common values in common attribute names with tuples in R also take a
null value, ω.
The full outer join can be simulated using the left and right outer joins (and hence the natural join and set union) as
follows:

R ⟗ S = (R ⟕ S) (R ⟖ S)

Operations for domain computations
There is nothing in relational algebra introduced so far that would allow computations on the data domains (other
than evaluation of propositional expressions involving equality). For example, it's not possible using only the algebra
introduced so far to write an expression that would multiply the numbers from two columns, e.g. a unit price with a
quantity to obtain a total price. Practical query languages have such facilities, e.g. the SQL SELECT allows
arithmetic operations to define new columns in the result SELECT unit_price * quantity AS

total_price FROM t, and a similar facility is provided more explicitly by Tutorial D's EXTEND keyword. In
database theory, this is called extended projection.:213

Aggregation

Furthermore, computing various functions on a column, like the summing up its elements, is also not possible using
the relational algebra introduced so far. There are five aggregate functions that are included with most relational
database systems. These operations are Sum, Count, Average, Maximum and Minimum. In relational algebra the
aggregation operation over a schema (A1, A2, ... An) is written as follows:
G1, G2, ..., Gm g f1(A1'), f2(A2'), ..., fk(Ak') (r)
where each Aj', 1 ≤ j ≤ k, is one of the original attributes Ai, 1 ≤ i ≤ n.
The attributes preceding the g are grouping attributes, which function like a "group by" clause in SQL. Then there
are an arbitrary number of aggregation functions applied to individual attributes. The operation is applied to an
arbitrary relation r. The grouping attributes are optional, and if they are not supplied, the aggregation functions are

http://en.wikipedia.org/w/index.php?title=Tutorial_D
http://en.wikipedia.org/w/index.php?title=Aggregate_function

Relational algebra 49

applied across the entire relation to which the operation is applied.
Let's assume that we have a table named Account with three columns, namely Account_Number, Branch_Name and
Balance. We wish to find the maximum balance of each branch. This is accomplished by

Branch_NameGMax(Balance)(Account). To find the highest balance of all accounts regardless of branch, we could simply
write GMax(Balance)(Account).

Transitive closure
Although relational algebra seems powerful enough for most practical purposes, there are some simple and natural
operators on relations which cannot be expressed by relational algebra. One of them is the transitive closure of a
binary relation. Given a domain D, let binary relation R be a subset of D×D. The transitive closure R+ of R is the
smallest subset of D×D containing R which satisfies the following condition:

There is no relational algebra expression E(R) taking R as a variable argument which produces R+. This can be
proved using the fact that, given a relational expression E for which it is claimed that E(R) = R+, where R is a
variable, we can always find an instance r of R (and a corresponding domain d) such that E(r) ≠ r+.
SQL however officially supports such fixpoint queries since 1999, and it had vendor-specific extensions in this
direction well before that.

Use of algebraic properties for query optimization
Queries can be represented as a tree, where
•• the internal nodes are operators,
• leaves are relations,
•• subtrees are subexpressions.
Our primary goal is to transform expression trees into equivalent expression trees, where the average size of the
relations yielded by subexpressions in the tree is smaller than it was before the optimization. Our secondary goal is
to try to form common subexpressions within a single query, or if there is more than one query being evaluated at the
same time, in all of those queries. The rationale behind the second goal is that it is enough to compute common
subexpressions once, and the results can be used in all queries that contain that subexpression.
Here we present a set of rules that can be used in such transformations.

Selection
Rules about selection operators play the most important role in query optimization. Selection is an operator that very
effectively decreases the number of rows in its operand, so if we manage to move the selections in an expression tree
towards the leaves, the internal relations (yielded by subexpressions) will likely shrink.

Basic selection properties

Selection is idempotent (multiple applications of the same selection have no additional effect beyond the first one),
and commutative (the order selections are applied in has no effect on the eventual result).

1.
2.

http://en.wikipedia.org/w/index.php?title=Transitive_closure
http://en.wikipedia.org/w/index.php?title=Hierarchical_and_recursive_queries_in_SQL
http://en.wikipedia.org/w/index.php?title=Relational_query
http://en.wikipedia.org/w/index.php?title=Tree_%28data_structure%29
http://en.wikipedia.org/w/index.php?title=Idempotent
http://en.wikipedia.org/w/index.php?title=Commutative

Relational algebra 50

Breaking up selections with complex conditions

A selection whose condition is a conjunction of simpler conditions is equivalent to a sequence of selections with
those same individual conditions, and selection whose condition is a disjunction is equivalent to a union of
selections. These identities can be used to merge selections so that fewer selections need to be evaluated, or to split
them so that the component selections may be moved or optimized separately.

1.
2.

Selection and cross product

Cross product is the costliest operator to evaluate. If the input relations have N and M rows, the result will contain
rows. Therefore it is very important to do our best to decrease the size of both operands before applying the

cross product operator.
This can be effectively done, if the cross product is followed by a selection operator, e.g. (R × P). Considering
the definition of join, this is the most likely case. If the cross product is not followed by a selection operator, we can
try to push down a selection from higher levels of the expression tree using the other selection rules.
In the above case we break up condition A into conditions B, C and D using the split rules about complex selection
conditions, so that A = B C D and B only contains attributes from R, C contains attributes only from P and D
contains the part of A that contains attributes from both R and P. Note, that B, C or D are possibly empty. Then the
following holds:

Selection and set operators

Selection is distributive over the setminus, intersection, and union operators. The following three rules are used to
push selection below set operations in the expression tree. Note, that in the setminus and the intersection operators it
is possible to apply the selection operator to only one of the operands after the transformation. This can make sense
in cases, where one of the operands is small, and the overhead of evaluating the selection operator outweighs the
benefits of using a smaller relation as an operand.

1.
2.
3.

Selection and projection

Selection commutes with projection if and only if the fields referenced in the selection condition are a subset of the
fields in the projection. Performing selection before projection may be useful if the operand is a cross product or
join. In other cases, if the selection condition is relatively expensive to compute, moving selection outside the
projection may reduce the number of tuples which must be tested (since projection may produce fewer tuples due to
the elimination of duplicates resulting from omitted fields).

http://en.wikipedia.org/w/index.php?title=Logical_conjunction
http://en.wikipedia.org/w/index.php?title=Logical_disjunction
http://en.wikipedia.org/w/index.php?title=Distributive

Relational algebra 51

Projection

Basic projection properties

Projection is idempotent, so that a series of (valid) projections is equivalent to the outermost projection.

Projection and set operators

Projection is distributive over set union.

Projection does not distribute over intersection and set difference. Counterexamples are given by:

and

where b is assumed to be distinct from b'.

Rename

Basic rename properties

Successive renames of a variable can be collapsed into a single rename. Rename operations which have no variables
in common can be arbitrarily reordered with respect to one another, which can be exploited to make successive
renames adjacent so that they can be collapsed.

1.
2.

Rename and set operators

Rename is distributive over set difference, union, and intersection.

1.
2.
3.

Implementations
The first query language to be based on Codd's algebra was ISBL, and this pioneering work has been acclaimed by
many authorities as having shown the way to make Codd's idea into a useful language. Business System 12 was a
short-lived industry-strength relational DBMS that followed the ISBL example.
In 1998 Chris Date and Hugh Darwen proposed a language called Tutorial D intended for use in teaching relational
database theory, and its query language also draws on ISBL's ideas. Rel is an implementation of Tutorial D.
Even the query language of SQL is loosely based on a relational algebra, though the operands in SQL (tables) are not
exactly relations and several useful theorems about the relational algebra do not hold in the SQL counterpart
(arguably to the detriment of optimisers and/or users). The SQL table model is a bag (multiset), rather than a set. For
example, the expression (R ∪ S) − T = (R − T) ∪ (S − T) is a theorem for relational algebra on sets, but not for
relational algebra on bags; for a treatment of relational algebra on bags see chapter 5 of the "Complete" textbook by
Garcia-Molina, Ullman and Widom.

http://en.wikipedia.org/w/index.php?title=Distributive
http://en.wikipedia.org/w/index.php?title=ISBL
http://en.wikipedia.org/w/index.php?title=Business_System_12
http://en.wikipedia.org/w/index.php?title=Christopher_J._Date
http://en.wikipedia.org/w/index.php?title=Hugh_Darwen
http://en.wikipedia.org/w/index.php?title=Rel_%28DBMS%29
http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=Multiset
http://en.wikipedia.org/w/index.php?title=Garcia-Molina
http://en.wikipedia.org/w/index.php?title=Jeffrey_Ullman
http://en.wikipedia.org/w/index.php?title=Jennifer_Widom

Relational algebra 52

References
[1] Serge Abiteboul, Richard Hull, Victor Vianu, Foundations of databases, Addison-Wesley, 1995, ISBN 0-201-53771-0, p. 29–33
[2] Serge Abiteboul, Richard Hull, Victor Vianu, Foundations of databases, Addison-Wesley, 1995, ISBN 0-201-53771-0, p. 59–63 and p. 71
[3] In Unicode, the bowtie symbol is (U+22C8).
[4] In Unicode, the ltimes symbol is (U+22C9). The rtimes symbol is (U+22CA)
[5] In Unicode, the Antijoin symbol is (U+25B7).
[6] In Unicode, the Left outer join symbol is (U+27D5).
[7] In Unicode, the Right outer join symbol is (U+27D6).
[8] In Unicode, the Full Outer join symbol is (U+27D7).

Further reading
Practically any academic textbook on databases has a detailed treatment of the classic relational algebra.
• Imieliński, T.; Lipski, W. (1984). "The relational model of data and cylindric algebras". Journal of Computer and

System Sciences 28: 80–102. doi: 10.1016/0022-0000(84)90077-1 (http:/ / dx. doi. org/ 10. 1016/
0022-0000(84)90077-1). (For relationship with cylindric algebras).

External links
• RAT. Software Relational Algebra Translator to SQL (http:/ / www. slinfo. una. ac. cr/ rat/ rat. html)
• Lecture Notes: Relational Algebra (http:/ / www. databasteknik. se/ webbkursen/ relalg-lecture/ index. html) – A

quick tutorial to adapt SQL queries into relational algebra
• LEAP – An implementation of the relational algebra (http:/ / leap. sourceforge. net)
• Relational – A graphic implementation of the relational algebra (http:/ / galileo. dmi. unict. it/ wiki/ relational/)
• Query Optimization (http:/ / www-db. stanford. edu/ ~widom/ cs346/ ioannidis. pdf) This paper is an introduction

into the use of the relational algebra in optimizing queries, and includes numerous citations for more in-depth
study.

• bandilab.org – neat graphical illustrations of the relational operators (http:/ / bandilab. org/ bandicoot-algebra.
pdf)

• Relational Algebra System for Oracle and Microsoft SQL Server (http:/ / www. cse. fau. edu/
~marty#RADownload)

http://en.wikipedia.org/w/index.php?title=Serge_Abiteboul
http://en.wikipedia.org/w/index.php?title=Richard_Hull_%28computer_scientist%29
http://en.wikipedia.org/w/index.php?title=Victor_Vianu
http://en.wikipedia.org/w/index.php?title=Serge_Abiteboul
http://en.wikipedia.org/w/index.php?title=Richard_Hull_%28computer_scientist%29
http://en.wikipedia.org/w/index.php?title=Victor_Vianu
http://en.wikipedia.org/w/index.php?title=Unicode
http://en.wikipedia.org/w/index.php?title=Unicode
http://en.wikipedia.org/w/index.php?title=Unicode
http://en.wikipedia.org/w/index.php?title=Unicode
http://en.wikipedia.org/w/index.php?title=Unicode
http://en.wikipedia.org/w/index.php?title=Unicode
http://en.wikipedia.org/w/index.php?title=Digital_object_identifier
http://dx.doi.org/10.1016%2F0022-0000%2884%2990077-1
http://dx.doi.org/10.1016%2F0022-0000%2884%2990077-1
http://en.wikipedia.org/w/index.php?title=Cylindric_algebra
http://www.slinfo.una.ac.cr/rat/rat.html
http://www.databasteknik.se/webbkursen/relalg-lecture/index.html
http://leap.sourceforge.net
http://galileo.dmi.unict.it/wiki/relational/
http://www-db.stanford.edu/~widom/cs346/ioannidis.pdf
http://bandilab.org/bandicoot-algebra.pdf
http://bandilab.org/bandicoot-algebra.pdf
http://www.cse.fau.edu/~marty#RADownload
http://www.cse.fau.edu/~marty#RADownload

Relational calculus 53

Relational calculus
Relational calculus consists of two calculi, the tuple relational calculus and the domain relational calculus, that are
part of the relational model for databases and provide a declarative way to specify database queries. This in contrast
to the relational algebra which is also part of the relational model but provides a more procedural way for specifying
queries.
The relational algebra might suggest these steps to retrieve the phone numbers and names of book stores that supply
Some Sample Book:
1.1. Join book stores and titles over the BookstoreID.
2. Restrict the result of that join to tuples for the book Some Sample Book.
3.3. Project the result of that restriction over StoreName and StorePhone.
The relational calculus would formulate a descriptive, declarative way:

Get StoreName and StorePhone for supplies such that there exists a title BK with the same BookstoreID value
and with a BookTitle value of Some Sample Book.

The relational algebra and the relational calculus are essentially logically equivalent: for any algebraic expression,
there is an equivalent expression in the calculus, and vice versa. This result is known as Codd's theorem.

References
• Date, Christopher J. (2004). An Introduction to Database Systems (8th ed.). Addison Wesley.

ISBN 0-321-19784-4.

Relational database
A relational database is a database that has a collection of tables of data items, all of which is formally described
and organized according to the relational model. Data in single table represents relation, from which the name of the
database type comes from. In typical solutions, tables may have additionally defined relationships with each other.
In the relational model, each table schema must identify a column or group of columns, called the primary key, to
uniquely identify each row. A relationship can then be established between each row in the table and a row in
another table by creating a foreign key, a column or group of columns in one table that points to the primary key of
another table. The relational model offers various levels of refinement of table organization and reorganization called
database normalization. (See Normalization below.) The database management system (DBMS) of a relational
database is called an RDBMS, and is the software of a relational database.
The relational database was first defined in June 1970 by Edgar Codd, of IBM's San Jose Research Laboratory.
Codd's view of what qualifies as an RDBMS is summarized in Codd's 12 rules. A relational database has become the
predominant choice in storing data. Other models besides the relational model include the hierarchical database
model and the network model.

http://en.wikipedia.org/w/index.php?title=Tuple_relational_calculus
http://en.wikipedia.org/w/index.php?title=Domain_relational_calculus
http://en.wikipedia.org/w/index.php?title=Logical_equivalence
http://en.wikipedia.org/w/index.php?title=Codd%27s_theorem
http://en.wikipedia.org/w/index.php?title=Christopher_J._Date
http://en.wikipedia.org/w/index.php?title=International_Standard_Book_Number
http://en.wikipedia.org/w/index.php?title=Special:BookSources/0-321-19784-4
http://en.wikipedia.org/w/index.php?title=Database_schema
http://en.wikipedia.org/w/index.php?title=Primary_key
http://en.wikipedia.org/w/index.php?title=Database_management_system
http://en.wikipedia.org/w/index.php?title=E.F._Codd
http://en.wikipedia.org/w/index.php?title=IBM_Almaden_Research_Center
http://en.wikipedia.org/w/index.php?title=Codd%27s_12_rules
http://en.wikipedia.org/w/index.php?title=Hierarchical_database_model
http://en.wikipedia.org/w/index.php?title=Hierarchical_database_model
http://en.wikipedia.org/w/index.php?title=Network_model

Relational database 54

Terminology

Relational database terminology.

Relational database theory uses
mathematical terminology, which are
roughly equivalent to the SQL
database terminology concerning
normalization. The table below
summarizes some of the most
important relational database terms and
their SQL database equivalents. It was
first introduced in 1970 following the
work of E.F.Codd.

A row or tuple has a relation schema,
but an entire database has a relational schema.

SQL Relational database Description

Row Tuple Data set with specific instances in the range of each member

Column name; Column
data

Attribute name; Attribute
value

Labeled member in the set of elements common to all data sets; A name, word,
number, phrase, etc.

Table Relation; Base relvar Formal data structure

Set of column names Relation scheme; Set of
attributes

A schema

View; Query result; Result
set

Derived relvar A data report from the RDBMS in response to a query

Relations or Tables
A relation is defined as a set of tuples that have the same attributes. A tuple usually represents an object and
information about that object. Objects are typically physical objects or concepts. A relation is usually described as a
table, which is organized into rows and columns. All the data referenced by an attribute are in the same domain and
conform to the same constraints.
The relational model specifies that the tuples of a relation have no specific order and that the tuples, in turn, impose
no order on the attributes. Applications access data by specifying queries, which use operations such as select to
identify tuples, project to identify attributes, and join to combine relations. Relations can be modified using the
insert, delete, and update operators. New tuples can supply explicit values or be derived from a query. Similarly,
queries identify tuples for updating or deleting.
Tuples by definition are unique. If the tuple contains a candidate or primary key then obviously it is unique;
however, a primary key need not be defined for a row or record to be a tuple. The definition of a tuple requires that it
be unique, but does not require a primary key to be defined. Because a tuple is unique, its attributes by definition
constitute a superkey.

http://en.wikipedia.org/w/index.php?title=File%3ARelational_database_terms.svg
http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=Relvar
http://en.wikipedia.org/w/index.php?title=Tuple
http://en.wikipedia.org/w/index.php?title=Attribute_%28computing%29
http://en.wikipedia.org/w/index.php?title=Domain_%28mathematics%29

Relational database 55

Base and derived relations
In a relational database, all data are stored and accessed via relations. Relations that store data are called "base
relations", and in implementations are called "tables". Other relations do not store data, but are computed by
applying relational operations to other relations. These relations are sometimes called "derived relations". In
implementations these are called "views" or "queries". Derived relations are convenient in that they act as a single
relation, even though they may grab information from several relations. Also, derived relations can be used as an
abstraction layer.

Domain
A domain describes the set of possible values for a given attribute, and can be considered a constraint on the value of
the attribute. Mathematically, attaching a domain to an attribute means that any value for the attribute must be an
element of the specified set. The character data value 'ABC', for instance, is not in the integer domain, but the integer
value 123 is in the integer domain.

Constraints
Constraints make it possible to further restrict the domain of an attribute. For instance, a constraint can restrict a
given integer attribute to values between 1 and 10. Constraints provide one method of implementing business rules
in the database. SQL implements constraint functionality in the form of check constraints. Constraints restrict the
data that can be stored in relations. These are usually defined using expressions that result in a boolean value,
indicating whether or not the data satisfies the constraint. Constraints can apply to single attributes, to a tuple
(restricting combinations of attributes) or to an entire relation. Since every attribute has an associated domain, there
are constraints (domain constraints). The two principal rules for the relational model are known as entity integrity
and referential integrity.

Primary keys
A primary key uniquely specifies a tuple within a table. In order for an attribute to be a good primary key it must not
repeat. While natural attributes (attributes used to describe the data being entered) are sometimes good primary keys,
surrogate keys are often used instead. A surrogate key is an artificial attribute assigned to an object which uniquely
identifies it (for instance, in a table of information about students at a school they might all be assigned a student ID
in order to differentiate them). The surrogate key has no intrinsic (inherent) meaning, but rather is useful through its
ability to uniquely identify a tuple. Another common occurrence, especially in regards to N:M cardinality is the
composite key. A composite key is a key made up of two or more attributes within a table that (together) uniquely
identify a record. (For example, in a database relating students, teachers, and classes. Classes could be uniquely
identified by a composite key of their room number and time slot, since no other class could have exactly the same
combination of attributes. In fact, use of a composite key such as this can be a form of data verification, albeit a
weak one.)

Foreign key
A foreign key is a field in a relational table that matches the primary key column of another table. The foreign key
can be used to cross-reference tables. Foreign keys need not have unique values in the referencing relation. Foreign
keys effectively use the values of attributes in the referenced relation to restrict the domain of one or more attributes
in the referencing relation. A foreign key could be described formally as: "For all tuples in the referencing relation
projected over the referencing attributes, there must exist a tuple in the referenced relation projected over those same
attributes such that the values in each of the referencing attributes match the corresponding values in the referenced
attributes."

http://en.wikipedia.org/w/index.php?title=View_%28database%29
http://en.wikipedia.org/w/index.php?title=Abstraction_layer
http://en.wikipedia.org/w/index.php?title=Business_rules
http://en.wikipedia.org/w/index.php?title=Check_constraint
http://en.wikipedia.org/w/index.php?title=Boolean_data_type
http://en.wikipedia.org/w/index.php?title=Compound_key
http://en.wikipedia.org/w/index.php?title=Data_verification

Relational database 56

Stored procedures
A stored procedure is executable code that is associated with, and generally stored in, the database. Stored
procedures usually collect and customize common operations, like inserting a tuple into a relation, gathering
statistical information about usage patterns, or encapsulating complex business logic and calculations. Frequently
they are used as an application programming interface (API) for security or simplicity. Implementations of stored
procedures on SQL RDBMSs often allow developers to take advantage of procedural extensions (often
vendor-specific) to the standard declarative SQL syntax. Stored procedures are not part of the relational database
model, but all commercial implementations include them.

Index
An index is one way of providing quicker access to data. Indices can be created on any combination of attributes on
a relation. Queries that filter using those attributes can find matching tuples randomly using the index, without
having to check each tuple in turn. This is analogous to using the index of a book to go directly to the page on which
the information you are looking for is found, so that you do not have to read the entire book to find what you are
looking for. Relational databases typically supply multiple indexing techniques, each of which is optimal for some
combination of data distribution, relation size, and typical access pattern. Indices are usually implemented via B+
trees, R-trees, and bitmaps. Indices are usually not considered part of the database, as they are considered an
implementation detail, though indices are usually maintained by the same group that maintains the other parts of the
database. It should be noted that use of efficient indexes on both primary and foreign keys can dramatically improve
query performance. This is because B-tree indexes result in query times proportional to log(n) where n is the number
of rows in a table and hash indexes result in constant time queries (no size dependency so long as the relevant part of
the index fits into memory).

Relational operations
Queries made against the relational database, and the derived relvars in the database are expressed in a relational
calculus or a relational algebra. In his original relational algebra, Codd introduced eight relational operators in two
groups of four operators each. The first four operators were based on the traditional mathematical set operations:
• The union operator combines the tuples of two relations and removes all duplicate tuples from the result. The

relational union operator is equivalent to the SQL UNION operator.
• The intersection operator produces the set of tuples that two relations share in common. Intersection is

implemented in SQL in the form of the INTERSECT operator.
• The difference operator acts on two relations and produces the set of tuples from the first relation that do not exist

in the second relation. Difference is implemented in SQL in the form of the EXCEPT or MINUS operator.
• The cartesian product of two relations is a join that is not restricted by any criteria, resulting in every tuple of the

first relation being matched with every tuple of the second relation. The cartesian product is implemented in SQL
as the CROSS JOIN operator.

The remaining operators proposed by Codd involve special operations specific to relational databases:
• The selection, or restriction, operation retrieves tuples from a relation, limiting the results to only those that meet

a specific criterion, i.e. a subset in terms of set theory. The SQL equivalent of selection is the SELECT query
statement with a WHERE clause.

• The projection operation extracts only the specified attributes from a tuple or set of tuples.
• The join operation defined for relational databases is often referred to as a natural join. In this type of join, two

relations are connected by their common attributes. SQL's approximation of a natural join is the INNER JOIN
operator. In SQL, an INNER JOIN prevents a cartesian product from occurring when there are two tables in a
query. For each table added to a SQL Query, one additional INNER JOIN is added to prevent a cartesian product.
Thus, for N tables in a SQL query, there must be N-1 INNER JOINS to prevent a cartesian product.

http://en.wikipedia.org/w/index.php?title=Tuple
http://en.wikipedia.org/w/index.php?title=Business_logic
http://en.wikipedia.org/w/index.php?title=Application_programming_interface
http://en.wikipedia.org/w/index.php?title=Procedural_programming
http://en.wikipedia.org/w/index.php?title=Declarative_programming
http://en.wikipedia.org/w/index.php?title=Index_%28publishing%29
http://en.wikipedia.org/w/index.php?title=B%2B_tree
http://en.wikipedia.org/w/index.php?title=B%2B_tree
http://en.wikipedia.org/w/index.php?title=R-tree
http://en.wikipedia.org/w/index.php?title=Bitmap_index
http://en.wikipedia.org/w/index.php?title=Relvars
http://en.wikipedia.org/w/index.php?title=Set_theory
http://en.wikipedia.org/w/index.php?title=Union_%28set_theory%29
http://en.wikipedia.org/w/index.php?title=Union_%28SQL%29
http://en.wikipedia.org/w/index.php?title=Intersection_%28set_theory%29
http://en.wikipedia.org/w/index.php?title=Intersect_%28SQL%29
http://en.wikipedia.org/w/index.php?title=Complement_%28set_theory%29
http://en.wikipedia.org/w/index.php?title=Except_%28SQL%29
http://en.wikipedia.org/w/index.php?title=Cartesian_product
http://en.wikipedia.org/w/index.php?title=Cross_join
http://en.wikipedia.org/w/index.php?title=Subset
http://en.wikipedia.org/w/index.php?title=Select_%28SQL%29
http://en.wikipedia.org/w/index.php?title=Where_%28SQL%29
http://en.wikipedia.org/w/index.php?title=Projection_%28relational_algebra%29
http://en.wikipedia.org/w/index.php?title=Inner_join

Relational database 57

• The relational division operation is a slightly more complex operation, which involves essentially using the tuples
of one relation (the dividend) to partition a second relation (the divisor). The relational division operator is
effectively the opposite of the cartesian product operator (hence the name).

Other operators have been introduced or proposed since Codd's introduction of the original eight including relational
comparison operators and extensions that offer support for nesting and hierarchical data, among others.

Normalization
Normalization was first proposed by Codd as an integral part of the relational model. It encompasses a set of
procedures designed to eliminate nonsimple domains (non-atomic values) and the redundancy (duplication) of data,
which in turn prevents data manipulation anomalies and loss of data integrity. The most common forms of
normalization applied to databases are called the normal forms.

References

Relational database management system
A relational database management system (RDBMS) is a database management system (DBMS) that is based on
the relational model as introduced by E. F. Codd, of IBM's San Jose Research Laboratory. Many popular databases
currently in use are based on the relational database model.
RDBMSs have become since the 1980s a predominant choice for the storage of information in new databases used
for financial records, manufacturing and logistical information, personnel data, and much more. Relational databases
have often replaced legacy hierarchical databases and network databases because they are easier to understand and
use. However, relational databases have been challenged by object databases, which were introduced in an attempt to
address the object-relational impedance mismatch in relational database, and XML databases.[citation needed]

Market share
According to research company Gartner, the five leading commercial relational database vendors by revenue in 2011
were Oracle (48.8%), IBM (20.2%), Microsoft (17.0%), SAP including Sybase (4.6%), and Teradata (3.7%).
The three leading open source implementations are MySQL, PostgreSQL, and SQLite. MariaDB is a prominent fork
of MySQL prompted by Oracle's acquisition of MySQL AB.
According to Gartner, in 2008, the percentage of database sites using any given technology were (a given site may
deploy multiple technologies):
• Oracle Database - 70%
• Microsoft SQL Server - 68%
• MySQL (Oracle Corporation) - 50%
• IBM DB2 - 39%
• IBM Informix - 18%
• SAP Sybase Adaptive Server Enterprise - 15%
• SAP Sybase IQ - 14%
• Teradata - 11%
According to DB-Engines, the most popular systems are Oracle, MySQL, Microsoft SQL Server, PostgreSQL and
IBM DB2.

http://en.wikipedia.org/w/index.php?title=Relational_algebra%23Division
http://en.wikipedia.org/w/index.php?title=Database_normalization%23Normal_forms
http://en.wikipedia.org/w/index.php?title=Database_management_system
http://en.wikipedia.org/w/index.php?title=Edgar_F._Codd
http://en.wikipedia.org/w/index.php?title=IBM_Almaden_Research_Center
http://en.wikipedia.org/w/index.php?title=Hierarchical_database
http://en.wikipedia.org/w/index.php?title=Network_database
http://en.wikipedia.org/w/index.php?title=Object_database
http://en.wikipedia.org/w/index.php?title=Object-relational_impedance_mismatch
http://en.wikipedia.org/w/index.php?title=XML_database
http://en.wikipedia.org/wiki/Citation_needed
http://en.wikipedia.org/w/index.php?title=Gartner
http://en.wikipedia.org/w/index.php?title=Oracle_Corporation
http://en.wikipedia.org/w/index.php?title=IBM
http://en.wikipedia.org/w/index.php?title=Microsoft
http://en.wikipedia.org/w/index.php?title=SAP_AG
http://en.wikipedia.org/w/index.php?title=Sybase
http://en.wikipedia.org/w/index.php?title=Teradata
http://en.wikipedia.org/w/index.php?title=Open_source
http://en.wikipedia.org/w/index.php?title=MySQL
http://en.wikipedia.org/w/index.php?title=PostgreSQL
http://en.wikipedia.org/w/index.php?title=SQLite
http://en.wikipedia.org/w/index.php?title=MariaDB
http://en.wikipedia.org/w/index.php?title=Oracle_Database
http://en.wikipedia.org/w/index.php?title=Microsoft_SQL_Server
http://en.wikipedia.org/w/index.php?title=MySQL
http://en.wikipedia.org/w/index.php?title=IBM_DB2
http://en.wikipedia.org/w/index.php?title=IBM_Informix
http://en.wikipedia.org/w/index.php?title=Adaptive_Server_Enterprise
http://en.wikipedia.org/w/index.php?title=Sybase_IQ
http://en.wikipedia.org/w/index.php?title=Teradata
http://en.wikipedia.org/w/index.php?title=Oracle_Corporation
http://en.wikipedia.org/w/index.php?title=MySQL
http://en.wikipedia.org/w/index.php?title=Microsoft_SQL_Server
http://en.wikipedia.org/w/index.php?title=PostgreSQL
http://en.wikipedia.org/w/index.php?title=IBM_DB2

Relational database management system 58

History
In 1974, IBM began developing System R, a research project to develop a prototype RDBMS. Its first commercial
product was SQL/DS, released in 1981. However, the first commercially available RDBMS was Oracle, released in
1979 by Relational Software, now Oracle Corporation. Other examples of an RDBMS include DB2, SAP Sybase
ASE, and Informix.it is also developed by ash in 2013.

Historical usage of the term
The term "relational database" was invented by E. F. Codd at IBM in 1970, Codd introduced the term in his seminal
paper "A Relational Model of Data for Large Shared Data Banks".[1] In this paper and later papers, he defined what
he meant by "relational". One well-known definition of what constitutes a relational database system is composed of
Codd's 12 rules. However, many of the early implementations of the relational model did not conform to all of
Codd's rules, so the term gradually came to describe a broader class of database systems, which at a minimum:
• Present the data to the user as relations (a presentation in tabular form, i.e. as a collection of tables with each table

consisting of a set of rows and columns);
•• Provide relational operators to manipulate the data in tabular form.
The first systems that were relatively faithful implementations of the relational model were from the University of
Michigan; Micro DBMS (1969), the Massachusetts Institute of Technology;[2] (1971), and from IBM UK Scientific
Centre at Peterlee; IS1 (1970–72) and its followon PRTV (1973–79). The first system sold as an RDBMS was
Multics Relational Data Store, first sold in 1978. Others have been Berkeley Ingres QUEL and IBM BS12. The most
popular definition of an RDBMS is a product that presents a view of data as a collection of rows and columns, even
if it is not based strictly upon relational theory. By this definition, RDBMS products typically implement some but
not all of Codd's 12 rules. A second school of thought argues that if a database does not implement all of Codd's
rules (or the current understanding on the relational model, as expressed by Christopher J Date, Hugh Darwen and
others), it is not relational. This view, shared by many theorists and other strict adherents to Codd's principles, would
disqualify most DBMSs as not relational. For clarification, they often refer to some RDBMSs as Truly-Relational
Database Management Systems (TRDBMS), naming others Pseudo-Relational Database Management Systems
(PRDBMS).
As of 2009, most commercial relational DBMSes employ SQL as their query language.[citation needed] Alternative
query languages have been proposed and implemented, notably the pre-1996 implementation of Berkeley Ingres
QUEL.

References
[1] "A Relational Model of Data for Large Shared Data Banks" (http:/ / www. seas. upenn. edu/ ~zives/ 03f/ cis550/ codd. pdf)
[2][2] SIGFIDET '74 Proceedings of the 1974 ACM SIGFIDET (now SIGMOD) workshop on Data description, access and control

http://en.wikipedia.org/w/index.php?title=IBM_System_R
http://en.wikipedia.org/w/index.php?title=IBM_SQL/DS
http://en.wikipedia.org/w/index.php?title=Oracle_Database
http://en.wikipedia.org/w/index.php?title=Oracle_Corporation
http://en.wikipedia.org/w/index.php?title=IBM_DB2
http://en.wikipedia.org/w/index.php?title=Adaptive_Server_Enterprise
http://en.wikipedia.org/w/index.php?title=Adaptive_Server_Enterprise
http://en.wikipedia.org/w/index.php?title=IBM_Informix
http://en.wikipedia.org/w/index.php?title=Codd%27s_12_rules
http://en.wikipedia.org/w/index.php?title=Micro_DBMS
http://en.wikipedia.org/w/index.php?title=IBM_IS1
http://en.wikipedia.org/w/index.php?title=PRTV
http://en.wikipedia.org/w/index.php?title=Multics_Relational_Data_Store
http://en.wikipedia.org/w/index.php?title=Berkeley_Ingres_QUEL
http://en.wikipedia.org/w/index.php?title=IBM_BS12
http://en.wikipedia.org/w/index.php?title=Christopher_J_Date
http://en.wikipedia.org/w/index.php?title=Hugh_Darwen
http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/wiki/Citation_needed
http://www.seas.upenn.edu/~zives/03f/cis550/codd.pdf

Relational model 59

Relational model
The relational model for database management is a database model based on first-order predicate logic, first
formulated and proposed in 1969 by Edgar F. Codd.[1] In the relational model of a database, all data is represented in
terms of tuples, grouped into relations. A database organized in terms of the relational model is a relational database.

Diagram of an example database according to the Relational model.[2]

In the relational model, related records are linked together with a "key".

The purpose of the relational model is to provide
a declarative method for specifying data and
queries: users directly state what information the
database contains and what information they
want from it, and let the database management
system software take care of describing data
structures for storing the data and retrieval
procedures for answering queries.

Most relational databases use the SQL data
definition and query language; these systems
implement what can be regarded as an
engineering approximation to the relational
model. A table in an SQL database schema
corresponds to a predicate variable; the contents
of a table to a relation; key constraints, other
constraints, and SQL queries correspond to
predicates. However, SQL databases, including
DB2, deviate from the relational model in many
details, and Codd fiercely argued against
deviations that compromise the original
principles.[3]

Overview

The relational model's central idea is to describe
a database as a collection of predicates over a
finite set of predicate variables, describing
constraints on the possible values and
combinations of values. The content of the
database at any given time is a finite (logical)
model of the database, i.e. a set of relations, one
per predicate variable, such that all predicates
are satisfied. A request for information from the
database (a database query) is also a predicate.

http://en.wikipedia.org/w/index.php?title=First-order_logic
http://en.wikipedia.org/w/index.php?title=Edgar_F._Codd
http://en.wikipedia.org/w/index.php?title=Tuple
http://en.wikipedia.org/w/index.php?title=File%3ARelational_Model.svg
http://en.wikipedia.org/w/index.php?title=File%3ARelational_key.png
http://en.wikipedia.org/w/index.php?title=Declarative_programming
http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=Predicate_%28mathematical_logic%29
http://en.wikipedia.org/w/index.php?title=Constraint_%28database%29
http://en.wikipedia.org/w/index.php?title=Model_%28logic%29
http://en.wikipedia.org/w/index.php?title=Database_query

Relational model 60

Relational model concepts.

Alternatives to the relational
model

Other models are the hierarchical
model and network model. Some
systems using these older architectures
are still in use today in data centers
with high data volume needs, or where
existing systems are so complex and
abstract it would be cost-prohibitive to
migrate to systems employing the
relational model; also of note are
newer object-oriented databases.

Implementation
There have been several attempts to produce a true implementation of the relational database model as originally
defined by Codd and explained by Date, Darwen and others, but none have been popular successes so far. Rel is one
of the more recent attempts to do this.
The relational model was the first database model to be described in formal mathematical terms. Hierarchical and
network databases existed before relational databases, but their specifications were relatively informal. After the
relational model was defined, there were many attempts to compare and contrast the different models, and this led to
the emergence of more rigorous descriptions of the earlier models; though the procedural nature of the data
manipulation interfaces for hierarchical and network databases limited the scope for formalization.[citation needed]

History
The relational model was invented by E.F. (Ted) Codd as a general model of data, and subsequently maintained and
developed by Chris Date and Hugh Darwen among others. In The Third Manifesto (first published in 1995) Date and
Darwen show how the relational model can accommodate certain desired object-oriented features.

Controversies
Codd himself, some years after publication of his 1970 model, proposed a three-valued logic (True, False, Missing or
NULL) version of it to deal with missing information, and in his The Relational Model for Database Management
Version 2 (1990) he went a step further with a four-valued logic (True, False, Missing but Applicable, Missing but
Inapplicable) version. But these have never been implemented, presumably because of attending complexity. SQL's
NULL construct was intended to be part of a three-valued logic system, but fell short of that due to logical errors in
the standard and in its implementations.[citation needed]

Relational model topics

The model
The fundamental assumption of the relational model is that all data is represented as mathematical n-ary relations,
an n-ary relation being a subset of the Cartesian product of n domains. In the mathematical model, reasoning about
such data is done in two-valued predicate logic, meaning there are two possible evaluations for each proposition:
either true or false (and in particular no third value such as unknown, or not applicable, either of which are often
associated with the concept of NULL). Data are operated upon by means of a relational calculus or relational

http://en.wikipedia.org/w/index.php?title=File%3ARelational_model_concepts.png
http://en.wikipedia.org/w/index.php?title=Model_%28abstract%29
http://en.wikipedia.org/w/index.php?title=Hierarchical_database_model
http://en.wikipedia.org/w/index.php?title=Hierarchical_database_model
http://en.wikipedia.org/w/index.php?title=Network_model
http://en.wikipedia.org/w/index.php?title=System
http://en.wikipedia.org/w/index.php?title=Data_center
http://en.wikipedia.org/w/index.php?title=Object_database
http://en.wikipedia.org/w/index.php?title=Edgar_F._Codd
http://en.wikipedia.org/w/index.php?title=Christopher_J._Date
http://en.wikipedia.org/w/index.php?title=Hugh_Darwen
http://en.wikipedia.org/w/index.php?title=Rel_%28DBMS%29
http://en.wikipedia.org/wiki/Citation_needed
http://en.wikipedia.org/w/index.php?title=Edgar_F._Codd
http://en.wikipedia.org/w/index.php?title=Christopher_J._Date
http://en.wikipedia.org/w/index.php?title=Hugh_Darwen
http://en.wikipedia.org/w/index.php?title=The_Third_Manifesto
http://en.wikipedia.org/w/index.php?title=Object-oriented
http://en.wikipedia.org/w/index.php?title=Three-valued_logic
http://en.wikipedia.org/wiki/Citation_needed
http://en.wikipedia.org/w/index.php?title=Data
http://en.wikipedia.org/w/index.php?title=Arity
http://en.wikipedia.org/w/index.php?title=Subset
http://en.wikipedia.org/w/index.php?title=Cartesian_product
http://en.wikipedia.org/w/index.php?title=Reasoning
http://en.wikipedia.org/w/index.php?title=Predicate_logic
http://en.wikipedia.org/w/index.php?title=Evaluation
http://en.wikipedia.org/w/index.php?title=Proposition

Relational model 61

algebra, these being equivalent in expressive power.
The relational model of data permits the database designer to create a consistent, logical representation of
information. Consistency is achieved by including declared constraints in the database design, which is usually
referred to as the logical schema. The theory includes a process of database normalization whereby a design with
certain desirable properties can be selected from a set of logically equivalent alternatives. The access plans and other
implementation and operation details are handled by the DBMS engine, and are not reflected in the logical model.
This contrasts with common practice for SQL DBMSs in which performance tuning often requires changes to the
logical model.
The basic relational building block is the domain or data type, usually abbreviated nowadays to type. A tuple is an
ordered set of attribute values. An attribute is an ordered pair of attribute name and type name. An attribute value is
a specific valid value for the type of the attribute. This can be either a scalar value or a more complex type.
A relation consists of a heading and a body. A heading is a set of attributes. A body (of an n-ary relation) is a set of
n-tuples. The heading of the relation is also the heading of each of its tuples.
A relation is defined as a set of n-tuples. In both mathematics and the relational database model, a set is an
unordered collection of unique, non-duplicated items, although some DBMSs impose an order to their data. In
mathematics, a tuple has an order, and allows for duplication. E.F. Codd originally defined tuples using this
mathematical definition. Later, it was one of E.F. Codd's great insights that using attribute names instead of an
ordering would be so much more convenient (in general) in a computer language based on relations [citation needed].
This insight is still being used today. Though the concept has changed, the name "tuple" has not. An immediate and
important consequence of this distinguishing feature is that in the relational model the Cartesian product becomes
commutative.
A table is an accepted visual representation of a relation; a tuple is similar to the concept of a row.
A relvar is a named variable of some specific relation type, to which at all times some relation of that type is
assigned, though the relation may contain zero tuples.
The basic principle of the relational model is the Information Principle: all information is represented by data values
in relations. In accordance with this Principle, a relational database is a set of relvars and the result of every query is
presented as a relation.
The consistency of a relational database is enforced, not by rules built into the applications that use it, but rather by
constraints, declared as part of the logical schema and enforced by the DBMS for all applications. In general,
constraints are expressed using relational comparison operators, of which just one, "is subset of" (⊆), is theoretically
sufficient[citation needed]. In practice, several useful shorthands are expected to be available, of which the most
important are candidate key (really, superkey) and foreign key constraints.

Interpretation
To fully appreciate the relational model of data it is essential to understand the intended interpretation of a relation.
The body of a relation is sometimes called its extension. This is because it is to be interpreted as a representation of
the extension of some predicate, this being the set of true propositions that can be formed by replacing each free
variable in that predicate by a name (a term that designates something).
There is a one-to-one correspondence between the free variables of the predicate and the attribute names of the
relation heading. Each tuple of the relation body provides attribute values to instantiate the predicate by substituting
each of its free variables. The result is a proposition that is deemed, on account of the appearance of the tuple in the
relation body, to be true. Contrariwise, every tuple whose heading conforms to that of the relation, but which does
not appear in the body is deemed to be false. This assumption is known as the closed world assumption: it is often
violated in practical databases, where the absence of a tuple might mean that the truth of the corresponding
proposition is unknown. For example, the absence of the tuple ('John', 'Spanish') from a table of language skills

http://en.wikipedia.org/w/index.php?title=Expressive_power
http://en.wikipedia.org/w/index.php?title=Information
http://en.wikipedia.org/w/index.php?title=Constraint_%28database%29
http://en.wikipedia.org/w/index.php?title=Logical_equivalence
http://en.wikipedia.org/w/index.php?title=Access_plan
http://en.wikipedia.org/w/index.php?title=DBMS
http://en.wikipedia.org/w/index.php?title=Performance_tuning
http://en.wikipedia.org/w/index.php?title=Data_domain
http://en.wikipedia.org/w/index.php?title=Data_type
http://en.wikipedia.org/w/index.php?title=Tuple
http://en.wikipedia.org/w/index.php?title=Set_%28mathematics%29
http://en.wikipedia.org/w/index.php?title=Attribute_%28computing%29
http://en.wikipedia.org/w/index.php?title=Set_%28mathematics%29
http://en.wikipedia.org/w/index.php?title=Tuple
http://en.wikipedia.org/w/index.php?title=Edgar_F._Codd
http://en.wikipedia.org/w/index.php?title=Edgar_F._Codd
http://en.wikipedia.org/wiki/Citation_needed
http://en.wikipedia.org/w/index.php?title=Cartesian_product
http://en.wikipedia.org/w/index.php?title=Commutative_operation
http://en.wikipedia.org/w/index.php?title=Relvar
http://en.wikipedia.org/w/index.php?title=Information_Principle
http://en.wikipedia.org/w/index.php?title=Information
http://en.wikipedia.org/w/index.php?title=Constraint_%28database%29
http://en.wikipedia.org/w/index.php?title=DBMS
http://en.wikipedia.org/wiki/Citation_needed
http://en.wikipedia.org/w/index.php?title=Extension_%28predicate_logic%29
http://en.wikipedia.org/w/index.php?title=Predicate_%28logic%29
http://en.wikipedia.org/w/index.php?title=Proposition
http://en.wikipedia.org/w/index.php?title=Free_variable
http://en.wikipedia.org/w/index.php?title=Free_variable
http://en.wikipedia.org/w/index.php?title=Bijection
http://en.wikipedia.org/w/index.php?title=Closed_world_assumption

Relational model 62

cannot necessarily be taken as evidence that John does not speak Spanish.
For a formal exposition of these ideas, see the section Set-theoretic Formulation, below.

Application to databases
A data type as used in a typical relational database might be the set of integers, the set of character strings, the set of
dates, or the two boolean values true and false, and so on. The corresponding type names for these types might be
the strings "int", "char", "date", "boolean", etc. It is important to understand, though, that relational theory does not
dictate what types are to be supported; indeed, nowadays provisions are expected to be available for user-defined
types in addition to the built-in ones provided by the system.
Attribute is the term used in the theory for what is commonly referred to as a column. Similarly, table is commonly
used in place of the theoretical term relation (though in SQL the term is by no means synonymous with relation). A
table data structure is specified as a list of column definitions, each of which specifies a unique column name and the
type of the values that are permitted for that column. An attribute value is the entry in a specific column and row,
such as "John Doe" or "35".
A tuple is basically the same thing as a row, except in an SQL DBMS, where the column values in a row are
ordered. (Tuples are not ordered; instead, each attribute value is identified solely by the attribute name and never
by its ordinal position within the tuple.) An attribute name might be "name" or "age".
A relation is a table structure definition (a set of column definitions) along with the data appearing in that structure.
The structure definition is the heading and the data appearing in it is the body, a set of rows. A database relvar
(relation variable) is commonly known as a base table. The heading of its assigned value at any time is as specified
in the table declaration and its body is that most recently assigned to it by invoking some update operator
(typically, INSERT, UPDATE, or DELETE). The heading and body of the table resulting from evaluation of some
query are determined by the definitions of the operators used in the expression of that query. (Note that in SQL the
heading is not always a set of column definitions as described above, because it is possible for a column to have no
name and also for two or more columns to have the same name. Also, the body is not always a set of rows because in
SQL it is possible for the same row to appear more than once in the same body.)

SQL and the relational model
SQL, initially pushed as the standard language for relational databases, deviates from the relational model in several
places. The current ISO SQL standard doesn't mention the relational model or use relational terms or concepts.
However, it is possible to create a database conforming to the relational model using SQL if one does not use certain
SQL features.
The following deviations from the relational model have been notedWikipedia:Avoid weasel words in SQL. Note
that few database servers implement the entire SQL standard and in particular do not allow some of these deviations.
Whereas NULL is ubiquitous, for example, allowing duplicate column names within a table or anonymous columns
is uncommon.
Duplicate rows

The same row can appear more than once in an SQL table. The same tuple cannot appear more than once in a
relation.

Anonymous columns
A column in an SQL table can be unnamed and thus unable to be referenced in expressions. The relational
model requires every attribute to be named and referenceable.

Duplicate column names
Two or more columns of the same SQL table can have the same name and therefore cannot be referenced, on
account of the obvious ambiguity. The relational model requires every attribute to be referenceable.

http://en.wikipedia.org/w/index.php?title=Relational_model%23Set-theoretic_formulation
http://en.wikipedia.org/w/index.php?title=Data_domain
http://en.wikipedia.org/w/index.php?title=Tuple
http://en.wikipedia.org/w/index.php?title=Relvar
http://en.wikipedia.org/w/index.php?title=Standardization
http://en.wikipedia.org/w/index.php?title=International_Organization_for_Standardization
http://en.wikipedia.org/wiki/Avoid_weasel_words

Relational model 63

Column order significance
The order of columns in an SQL table is defined and significant, one consequence being that SQL's
implementations of Cartesian product and union are both noncommutative. The relational model requires there
to be no significance to any ordering of the attributes of a relation.

Views without CHECK OPTION
Updates to a view defined without CHECK OPTION can be accepted but the resulting update to the database
does not necessarily have the expressed effect on its target. For example, an invocation of INSERT can be
accepted but the inserted rows might not all appear in the view, or an invocation of UPDATE can result in
rows disappearing from the view. The relational model requires updates to a view to have the same effect as if
the view were a base relvar.

Columnless tables unrecognized
SQL requires every table to have at least one column, but there are two relations of degree zero (of cardinality
one and zero) and they are needed to represent extensions of predicates that contain no free variables.

NULL
This special mark can appear instead of a value wherever a value can appear in SQL, in particular in place of a
column value in some row. The deviation from the relational model arises from the fact that the
implementation of this ad hoc concept in SQL involves the use of three-valued logic, under which the
comparison of NULL with itself does not yield true but instead yields the third truth value, unknown; similarly
the comparison NULL with something other than itself does not yield false but instead yields unknown. It is
because of this behaviour in comparisons that NULL is described as a mark rather than a value. The relational
model depends on the law of excluded middle under which anything that is not true is false and anything that
is not false is true; it also requires every tuple in a relation body to have a value for every attribute of that
relation. This particular deviation is disputed by some if only because E.F. Codd himself eventually advocated
the use of special marks and a 4-valued logic, but this was based on his observation that there are two distinct
reasons why one might want to use a special mark in place of a value, which led opponents of the use of such
logics to discover more distinct reasons and at least as many as 19 have been noted, which would require a
21-valued logic. [citation needed] SQL itself uses NULL for several purposes other than to represent "value
unknown". For example, the sum of the empty set is NULL, meaning zero, the average of the empty set is
NULL, meaning undefined, and NULL appearing in the result of a LEFT JOIN can mean "no value because
there is no matching row in the right-hand operand".

Relational operations
Users (or programs) request data from a relational database by sending it a query that is written in a special language,
usually a dialect of SQL. Although SQL was originally intended for end-users, it is much more common for SQL
queries to be embedded into software that provides an easier user interface. Many Web sites, such as Wikipedia,
perform SQL queries when generating pages.
In response to a query, the database returns a result set, which is just a list of rows containing the answers. The
simplest query is just to return all the rows from a table, but more often, the rows are filtered in some way to return
just the answer wanted.
Often, data from multiple tables are combined into one, by doing a join. Conceptually, this is done by taking all
possible combinations of rows (the Cartesian product), and then filtering out everything except the answer. In
practice, relational database management systems rewrite ("optimize") queries to perform faster, using a variety of
techniques.
There are a number of relational operations in addition to join. These include project (the process of eliminating
some of the columns), restrict (the process of eliminating some of the rows), union (a way of combining two tables

http://en.wikipedia.org/w/index.php?title=Cardinality_%28SQL_statements%29
http://en.wikipedia.org/w/index.php?title=Multi-valued_logic
http://en.wikipedia.org/w/index.php?title=Truth_value
http://en.wikipedia.org/w/index.php?title=Law_of_excluded_middle
http://en.wikipedia.org/wiki/Citation_needed
http://en.wikipedia.org/w/index.php?title=Database_query
http://en.wikipedia.org/w/index.php?title=Join_%28SQL%29
http://en.wikipedia.org/w/index.php?title=Cartesian_product
http://en.wikipedia.org/w/index.php?title=Query_optimizer

Relational model 64

with similar structures), difference (that lists the rows in one table that are not found in the other), intersect (that lists
the rows found in both tables), and product (mentioned above, which combines each row of one table with each row
of the other). Depending on which other sources you consult, there are a number of other operators – many of which
can be defined in terms of those listed above. These include semi-join, outer operators such as outer join and outer
union, and various forms of division. Then there are operators to rename columns, and summarizing or aggregating
operators, and if you permit relation values as attributes (RVA – relation-valued attribute), then operators such as
group and ungroup. The SELECT statement in SQL serves to handle all of these except for the group and ungroup
operators.
The flexibility of relational databases allows programmers to write queries that were not anticipated by the database
designers. As a result, relational databases can be used by multiple applications in ways the original designers did
not foresee, which is especially important for databases that might be used for a long time (perhaps several decades).
This has made the idea and implementation of relational databases very popular with businesses.

Database normalization
Relations are classified based upon the types of anomalies to which they're vulnerable. A database that's in the first
normal form is vulnerable to all types of anomalies, while a database that's in the domain/key normal form has no
modification anomalies. Normal forms are hierarchical in nature. That is, the lowest level is the first normal form,
and the database cannot meet the requirements for higher level normal forms without first having met all the
requirements of the lesser normal forms.[4]

Examples

Database
An idealized, very simple example of a description of some relvars (relation variables) and their attributes:
• Customer (Customer ID, Tax ID, Name, Address, City, State, Zip, Phone, Email)
• Order (Order No, Customer ID, Invoice No, Date Placed, Date Promised, Terms, Status)
• Order Line (Order No, Order Line No, Product Code, Qty)
• Invoice (Invoice No, Customer ID, Order No, Date, Status)
• Invoice Line (Invoice No, Invoice Line No, Product Code, Qty Shipped)
• Product (Product Code, Product Description)
In this design we have six relvars: Customer, Order, Order Line, Invoice, Invoice Line and Product. The bold,
underlined attributes are candidate keys. The non-bold, underlined attributes are foreign keys.
Usually one candidate key is arbitrarily chosen to be called the primary key and used in preference over the other
candidate keys, which are then called alternate keys.
A candidate key is a unique identifier enforcing that no tuple will be duplicated; this would make the relation into
something else, namely a bag, by violating the basic definition of a set. Both foreign keys and superkeys (that
includes candidate keys) can be composite, that is, can be composed of several attributes. Below is a tabular
depiction of a relation of our example Customer relvar; a relation can be thought of as a value that can be attributed
to a relvar.

http://en.wikipedia.org/w/index.php?title=Relation-valued_attribute
http://en.wikipedia.org/w/index.php?title=Relvar
http://en.wikipedia.org/w/index.php?title=Design
http://en.wikipedia.org/w/index.php?title=Primary_key
http://en.wikipedia.org/w/index.php?title=Preference
http://en.wikipedia.org/w/index.php?title=Alternate_key
http://en.wikipedia.org/w/index.php?title=Identifier
http://en.wikipedia.org/w/index.php?title=Tuple
http://en.wikipedia.org/w/index.php?title=Bag_%28mathematics%29
http://en.wikipedia.org/w/index.php?title=Set_%28mathematics%29

Relational model 65

Customer relation

Customer ID Tax ID Name Address [More fields…]

1234567890 555-5512222 Munmun 323 Broadway …

2223344556 555-5523232 Wile E. 1200 Main Street …

3334445563 555-5533323 Ekta 871 1st Street …

4232342432 555-5325523 E. F. Codd 123 It Way …

If we attempted to insert a new customer with the ID 1234567890, this would violate the design of the relvar since
Customer ID is a primary key and we already have a customer 1234567890. The DBMS must reject a transaction
such as this that would render the database inconsistent by a violation of an integrity constraint.
Foreign keys are integrity constraints enforcing that the value of the attribute set is drawn from a candidate key in
another relation. For example in the Order relation the attribute Customer ID is a foreign key. A join is the
operation that draws on information from several relations at once. By joining relvars from the example above we
could query the database for all of the Customers, Orders, and Invoices. If we only wanted the tuples for a specific
customer, we would specify this using a restriction condition.
If we wanted to retrieve all of the Orders for Customer 1234567890, we could query the database to return every row
in the Order table with Customer ID 1234567890 and join the Order table to the Order Line table based on Order
No.
There is a flaw in our database design above. The Invoice relvar contains an Order No attribute. So, each tuple in the
Invoice relvar will have one Order No, which implies that there is precisely one Order for each Invoice. But in
reality an invoice can be created against many orders, or indeed for no particular order. Additionally the Order relvar
contains an Invoice No attribute, implying that each Order has a corresponding Invoice. But again this is not always
true in the real world. An order is sometimes paid through several invoices, and sometimes paid without an invoice.
In other words there can be many Invoices per Order and many Orders per Invoice. This is a many-to-many
relationship between Order and Invoice (also called a non-specific relationship). To represent this relationship in the
database a new relvar should be introduced whose role is to specify the correspondence between Orders and
Invoices:
OrderInvoice(Order No,Invoice No)
Now, the Order relvar has a one-to-many relationship to the OrderInvoice table, as does the Invoice relvar. If we
want to retrieve every Invoice for a particular Order, we can query for all orders where Order No in the Order
relation equals the Order No in OrderInvoice, and where Invoice No in OrderInvoice equals the Invoice No in
Invoice.

Set-theoretic formulation
Basic notions in the relational model are relation names and attribute names. We will represent these as strings such
as "Person" and "name" and we will usually use the variables and to range over them. Another
basic notion is the set of atomic values that contains values such as numbers and strings.
Our first definition concerns the notion of tuple, which formalizes the notion of row or record in a table:
Tuple

A tuple is a partial function from attribute names to atomic values.
Header

A header is a finite set of attribute names.
Projection

http://en.wikipedia.org/w/index.php?title=DBMS
http://en.wikipedia.org/w/index.php?title=Database_integrity
http://en.wikipedia.org/w/index.php?title=Integrity_constraint
http://en.wikipedia.org/w/index.php?title=Value_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Attribute_set
http://en.wikipedia.org/w/index.php?title=Join_%28SQL%29
http://en.wikipedia.org/w/index.php?title=Operation_%28mathematics%29
http://en.wikipedia.org/w/index.php?title=Information
http://en.wikipedia.org/w/index.php?title=Restriction_condition
http://en.wikipedia.org/w/index.php?title=Information_retrieval
http://en.wikipedia.org/w/index.php?title=Database_design
http://en.wikipedia.org/w/index.php?title=Reality
http://en.wikipedia.org/w/index.php?title=Many-to-many_%28data_model%29
http://en.wikipedia.org/w/index.php?title=Role
http://en.wikipedia.org/w/index.php?title=One-to-many_relationship
http://en.wikipedia.org/w/index.php?title=Tuple
http://en.wikipedia.org/w/index.php?title=Partial_function
http://en.wikipedia.org/w/index.php?title=Projection_%28relational_algebra%29

Relational model 66

The projection of a tuple on a finite set of attributes is .
The next definition defines relation that formalizes the contents of a table as it is defined in the relational model.
Relation

A relation is a tuple with , the header, and , the body, a set of tuples that all have the domain
.

Such a relation closely corresponds to what is usually called the extension of a predicate in first-order logic except
that here we identify the places in the predicate with attribute names. Usually in the relational model a database
schema is said to consist of a set of relation names, the headers that are associated with these names and the
constraints that should hold for every instance of the database schema.
Relation universe

A relation universe over a header is a non-empty set of relations with header .
Relation schema

A relation schema consists of a header and a predicate that is defined for all relations
with header . A relation satisfies a relation schema if it has header and satisfies .

Key constraints and functional dependencies
One of the simplest and most important types of relation constraints is the key constraint. It tells us that in every
instance of a certain relational schema the tuples can be identified by their values for certain attributes.
Superkey

A superkey is written as a finite set of attribute names.

A superkey holds in a relation if:
• and
• there exist no two distinct tuples such that .

A superkey holds in a relation universe if it holds in all relations in .
Theorem: A superkey holds in a relation universe over if and only if and
holds in .

Candidate key
A superkey holds as a candidate key for a relation universe if it holds as a superkey for and there is
no proper subset of that also holds as a superkey for .

Functional dependency

A functional dependency (FD for short) is written as for finite sets of attribute names.

A functional dependency holds in a relation if:
• and
• tuples ,

A functional dependency holds in a relation universe if it holds in all relations in .
Trivial functional dependency

A functional dependency is trivial under a header if it holds in all relation universes over .
Theorem: An FD is trivial under a header if and only if .

Closure
Armstrong's axioms: The closure of a set of FDs under a header , written as , is the smallest
superset of such that:

• (reflexivity)

http://en.wikipedia.org/w/index.php?title=Finite_set
http://en.wikipedia.org/w/index.php?title=Set_%28mathematics%29
http://en.wikipedia.org/w/index.php?title=First-order_logic
http://en.wikipedia.org/w/index.php?title=Logical_schema
http://en.wikipedia.org/w/index.php?title=Logical_schema
http://en.wikipedia.org/w/index.php?title=Constraint_%28database%29
http://en.wikipedia.org/w/index.php?title=Constraint_%28database%29
http://en.wikipedia.org/w/index.php?title=Proper_subset
http://en.wikipedia.org/w/index.php?title=Functional_dependency

Relational model 67

• (transitivity) and
• (augmentation)

Theorem: Armstrong's axioms are sound and complete; given a header and a set of FDs that only
contain subsets of , if and only if holds in all relation universes over in
which all FDs in hold.

Completion
The completion of a finite set of attributes under a finite set of FDs , written as , is the smallest
superset of such that:

•
The completion of an attribute set can be used to compute if a certain dependency is in the closure of a set of
FDs.

Theorem: Given a set of FDs, if and only if .
Irreducible cover

An irreducible cover of a set of FDs is a set of FDs such that:
•
• there exists no such that
• is a singleton set and
• .

Algorithm to derive candidate keys from functional dependencies
 INPUT: a set S of FDs that contain only subsets of a header H

 OUTPUT: the set C of superkeys that hold as candidate keys in

 all relation universes over H in which all FDs in S hold

 begin

 C := ∅; // found candidate keys

 Q := { H }; // superkeys that contain candidate keys

 while Q <> ∅ do
 let K be some element from Q;

 Q := Q – { K };
 minimal := true;

 for each X->Y in S do

 K' := (K – Y) ∪ X; // derive new superkey
 if K' ⊂ K then
 minimal := false;

 Q := Q ∪ { K' };
 end if

 end for

 if minimal and there is not a subset of K in C then

 remove all supersets of K from C;

 C := C ∪ { K };
 end if

 end while

 end

Relational model 68

References
[1] "Derivability, Redundancy, and Consistency of Relations Stored in Large Data Banks", E.F. Codd, IBM Research Report, 1969
[2] Data Integration Glossary (http:/ / knowledge. fhwa. dot. gov/ tam/ aashto. nsf/ All+ Documents/ 4825476B2B5C687285256B1F00544258/

$FILE/ DIGloss. pdf), U.S. Department of Transportation, August 2001.
[3][3] E. F. Codd, The Relational Model for Database Management, Addison-Wesley Publishing Company, 1990, ISBN 0-201-14192-2
[4] David M. Kroenke, Database Processing: Fundamentals, Design, and Implementation (1997), Prentice-Hall, Inc., pages 130–144

Further reading
• Date, C. J.; Darwen, Hugh (2000). Foundation for future database systems : the third manifesto ; a detailed study

of the impact of type theory on the relational model of data, including a comprehensive model of type inheritance
(2. ed. ed.). Reading, Mass. [u.a.]: Addison-Wesley. ISBN 0-201-70928-7.

• Date, C. J. (2007). An Introduction to Database Systems (8 ed.). Boston [u.a.]: Pearson Education.
ISBN 0-321-19784-4.

External links
• Feasibility of a set-theoretic data structure : a general structure based on a reconstituted definition of relation

(http:/ / hdl. handle. net/ 2027. 42/ 4164) (Childs' 1968 research cited by Codd's 1970 paper)
• The Third Manifesto (TTM) (http:/ / www. thethirdmanifesto. com/)
• Relational Databases (http:/ / www. dmoz. org/ Computers/ Software/ Databases/ Relational/) at the Open

Directory Project
• Relational Model (http:/ / c2. com/ cgi/ wiki?RelationalModel)
• Binary relations and tuples compared with respect to the semantic web (http:/ / blogs. sun. com/ bblfish/ entry/

why_binary_relations_beat_tuples)

http://knowledge.fhwa.dot.gov/tam/aashto.nsf/All+Documents/4825476B2B5C687285256B1F00544258/$FILE/DIGloss.pdf
http://knowledge.fhwa.dot.gov/tam/aashto.nsf/All+Documents/4825476B2B5C687285256B1F00544258/$FILE/DIGloss.pdf
http://en.wikipedia.org/w/index.php?title=International_Standard_Book_Number
http://en.wikipedia.org/w/index.php?title=Special:BookSources/0-201-70928-7
http://en.wikipedia.org/w/index.php?title=International_Standard_Book_Number
http://en.wikipedia.org/w/index.php?title=Special:BookSources/0-321-19784-4
http://hdl.handle.net/2027.42/4164
http://www.thethirdmanifesto.com/
http://www.dmoz.org/Computers/Software/Databases/Relational/
http://en.wikipedia.org/w/index.php?title=Open_Directory_Project
http://en.wikipedia.org/w/index.php?title=Open_Directory_Project
http://c2.com/cgi/wiki?RelationalModel
http://blogs.sun.com/bblfish/entry/why_binary_relations_beat_tuples
http://blogs.sun.com/bblfish/entry/why_binary_relations_beat_tuples

Object-relational database 69

Object-relational database
An object-relational database (ORD), or object-relational database management system (ORDBMS), is a
database management system (DBMS) similar to a relational database, but with an object-oriented database model:
objects, classes and inheritance are directly supported in database schemas and in the query language. In addition,
just as with pure relational systems, it supports extension of the data model with custom data-types and methods.

Example of an object-oriented database model.

An object-relational database can be
said to provide a middle ground
between relational databases and
object-oriented databases (OODBMS).
In object-relational databases, the
approach is essentially that of relational
databases: the data resides in the
database and is manipulated collectively
with queries in a query language; at the
other extreme are OODBMSes in which
the database is essentially a persistent
object store for software written in an
object-oriented programming language,
with a programming API for storing
and retrieving objects, and little or no
specific support for querying.

Overview
The basic goal for the Object-relational database is to bridge the gap between relational databases and the
object-oriented modeling techniques used in programming languages such as Java, C++, Visual Basic .NET or C#.
However, a more popular alternative for achieving such a bridge is to use a standard relational database systems with
some form of Object-relational mapping (ORM) software. Whereas traditional RDBMS or SQL-DBMS products
focused on the efficient management of data drawn from a limited set of data-types (defined by the relevant language
standards), an object-relational DBMS allows software developers to integrate their own types and the methods that
apply to them into the DBMS.
The ORDBMS (like ODBMS or OODBMS) is integrated with an object-oriented programming language. The
characteristic properties of ORDBMS are 1) complex data, 2) type inheritance, and 3) object behavior. Complex
data creation in most SQL ORDBMSs is based on preliminary schema definition via the user-defined type (UDT).
Hierarchy within structured complex data offers an additional property, type inheritance. That is, a structured type
can have subtypes that reuse all of its attributes and contain additional attributes specific to the subtype. Another
advantage, the object behavior, is related with access to the program objects. Such program objects have to be
storable and transportable for database processing, therefore they usually are named as persistent objects. Inside a
database, all the relations with a persistent program object are relations with its object identifier (OID). All of these
points can be addressed in a proper relational system, although the SQL standard and its implementations impose
arbitrary restrictions and additional complexityWikipedia:Citing sources
In object-oriented programming (OOP) object behavior is described through the methods (object functions). The
methods denoted by one name are distinguished by the type of their parameters and type of objects for which they
attached (method signature). The OOP languages call this the polymorphism principle, which briefly is defined as

http://en.wikipedia.org/w/index.php?title=Database_management_system
http://en.wikipedia.org/w/index.php?title=Object-oriented
http://en.wikipedia.org/w/index.php?title=Database_schema
http://en.wikipedia.org/w/index.php?title=Data_model
http://en.wikipedia.org/w/index.php?title=Data_type
http://en.wikipedia.org/w/index.php?title=Method_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=File%3AObject-Oriented_Model.svg
http://en.wikipedia.org/w/index.php?title=OODBMS
http://en.wikipedia.org/w/index.php?title=Object-oriented_programming_language
http://en.wikipedia.org/w/index.php?title=API
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=C%2B%2B
http://en.wikipedia.org/w/index.php?title=Visual_Basic_.NET
http://en.wikipedia.org/w/index.php?title=C_Sharp_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Object-relational_mapping
http://en.wikipedia.org/w/index.php?title=RDBMS
http://en.wikipedia.org/w/index.php?title=ODBMS
http://en.wikipedia.org/w/index.php?title=OODBMS
http://en.wikipedia.org/w/index.php?title=Object-oriented_programming_language
http://en.wikipedia.org/w/index.php?title=User-defined_type
http://en.wikipedia.org/w/index.php?title=Object_identifier
http://en.wikipedia.org/wiki/Citing_sources
http://en.wikipedia.org/w/index.php?title=Object-oriented_programming
http://en.wikipedia.org/w/index.php?title=Method_signature
http://en.wikipedia.org/w/index.php?title=Polymorphism_in_object-oriented_programming

Object-relational database 70

"one interface, many implementations". Other OOP principles, inheritance and encapsulation are related both, with
methods and attributes. Method inheritance is included in type inheritance. Encapsulation in OOP is a visibility
degree declared, for example, through the PUBLIC, PRIVATE and PROTECTED modifiers.

History
Object-relational database management systems grew out of research that occurred in the early 1990s. That research
extended existing relational database concepts by adding object concepts. The researchers aimed to retain a
declarative query-language based on predicate calculus as a central component of the architecture. Probably the most
notable research project, Postgres (UC Berkeley), spawned two products tracing their lineage to that research:
Illustra and PostgreSQL.
In the mid-1990s, early commercial products appeared. These included Illustra[1] (Illustra Information Systems,
acquired by Informix Software which was in turn acquired by IBM), Omniscience (Omniscience Corporation,
acquired by Oracle Corporation and became the original Oracle Lite), and UniSQL (UniSQL, Inc., acquired by
KCOMS). Ukrainian developer Ruslan Zasukhin, founder of Paradigma Software, Inc., developed and shipped the
first version of Valentina database in the mid-1990s as a C++ SDK. By the next decade, PostgreSQL had become a
commercially viable database and is the basis for several products today which maintain its ORDBMS features.
Computer scientists came to refer to these products as "object-relational database management systems" or
ORDBMSs.[2]

Many of the ideas of early object-relational database efforts have largely become incorporated into SQL:1999 via
structured types. In fact, any product that adheres to the object-oriented aspects of SQL:1999 could be described as
an object-relational database management product. For example, IBM's DB2, Oracle database, and Microsoft SQL
Server, make claims to support this technology and do so with varying degrees of success.

Comparison to RDBMS
An RDBMS might commonly involve SQL statements such as these:

 CREATE TABLE Customers (

 Id CHAR(12) NOT NULL PRIMARY KEY,

 Surname VARCHAR(32) NOT NULL,

 FirstName VARCHAR(32) NOT NULL,

 DOB DATE NOT NULL

);

 SELECT InitCap(Surname) || ', ' || InitCap(FirstName)

 FROM Customers

 WHERE Month(DOB) = Month(getdate())

 AND Day(DOB) = Day(getdate())

Most current[3] SQL databases allow the crafting of custom functions, which would allow the query to appear as:

 SELECT Formal(Id)

 FROM Customers

 WHERE Birthday(DOB) = Today()

In an object-relational database, one might see something like this, with user-defined data-types and expressions
such as BirthDay():

 CREATE TABLE Customers (

 Id Cust_Id NOT NULL PRIMARY KEY,

http://en.wikipedia.org/w/index.php?title=Inheritance_%28object-oriented_programming%29
http://en.wikipedia.org/w/index.php?title=Encapsulation_%28object-oriented_programming%29
http://en.wikipedia.org/w/index.php?title=Object_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Predicate_logic
http://en.wikipedia.org/w/index.php?title=Illustra
http://en.wikipedia.org/w/index.php?title=PostgreSQL
http://en.wikipedia.org/w/index.php?title=IBM_Informix%231980:_Early_history
http://en.wikipedia.org/w/index.php?title=International_Business_Machines
http://en.wikipedia.org/w/index.php?title=Omniscience_%28database%29
http://en.wikipedia.org/w/index.php?title=Oracle_Corporation
http://en.wikipedia.org/w/index.php?title=UniSQL
http://en.wikipedia.org/w/index.php?title=KCOMS
http://en.wikipedia.org/w/index.php?title=Paradigma_Software
http://en.wikipedia.org/w/index.php?title=Valentina_%28Database%29
http://en.wikipedia.org/w/index.php?title=C%2B%2B
http://en.wikipedia.org/w/index.php?title=Software_development_kit
http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=Structured_type
http://en.wikipedia.org/w/index.php?title=IBM_DB2
http://en.wikipedia.org/w/index.php?title=Oracle_database
http://en.wikipedia.org/w/index.php?title=Microsoft_SQL_Server
http://en.wikipedia.org/w/index.php?title=Microsoft_SQL_Server
http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=Object-relational_database&action=edit
http://en.wikipedia.org/w/index.php?title=Function_%28computer_science%29

Object-relational database 71

 Name PersonName NOT NULL,

 DOB DATE NOT NULL

);

 SELECT Formal(C.Id)

 FROM Customers C

 WHERE BirthDay (C.DOB) = TODAY;

The object-relational model can offer another advantage in that the database can make use of the relationships
between data to easily collect related records. In an address book application, an additional table would be added to
the ones above to hold zero or more addresses for each customer. Using a traditional RDBMS, collecting information
for both the user and their address requires a "join":

 SELECT InitCap(C.Surname) || ', ' || InitCap(C.FirstName), A.city

 FROM Customers C join Addresses A ON A.Cust_Id=C.Id -- the join

 WHERE A.city="New York"

The same query in an object-relational database appears more simply:

 SELECT Formal(C.Name)

 FROM Customers C

 WHERE C.address.city="New York" -- the linkage is 'understood' by

the ORDB

References
[1] Stonebraker,. Michael with Moore, Dorothy. Object-Relational DBMSs: The Next Great Wave. Morgan Kaufmann Publishers, 1996. ISBN

1-55860-397-2.
[2] There was, at the time, a dispute whether the term was coined by Michael Stonebraker of Illustra or Won Kim of UniSQL.
[3] http:/ / en. wikipedia. org/ w/ index. php?title=Object-relational_database& action=edit

External links
• Savushkin, Sergey (2003), A Point of View on ORDBMS (http:/ / savtechno. com/ articles/ ViewOfORDBMS.

html), retrieved 2012-07-21.
• JPA Performance Benchmark (http:/ / www. jpab. org/) — comparison of Java JPA ORM Products (Hibernate,

EclipseLink, OpenJPA, DataNucleus).
• PolePosition Benchmark (http:/ / www. polepos. org/) — shows the performance trade-offs for solutions in the

object-relational impedance mismatch context.

http://en.wikipedia.org/w/index.php?title=Address_book
http://en.wikipedia.org/w/index.php?title=Michael_Stonebraker
http://en.wikipedia.org/w/index.php?title=Won_Kim
http://en.wikipedia.org/w/index.php?title=Object-relational_database&action=edit
http://savtechno.com/articles/ViewOfORDBMS.html
http://savtechno.com/articles/ViewOfORDBMS.html
http://www.jpab.org/
http://www.polepos.org/
http://en.wikipedia.org/w/index.php?title=Object-relational_impedance_mismatch

Transaction processing 72

Transaction processing
In computer science, transaction processing is information processing that is divided into individual, indivisible
operations, called transactions. Each transaction must succeed or fail as a complete unit; it cannot remain in an
intermediate state.
Since most, though not necessarily all, transaction processing today is interactive the term is often treated as
synonymous with online transaction processing.

Description
Transaction processing is designed to maintain a database Integrity (typically a database or some modern
filesystems) in a known, consistent state, by ensuring that interdependent operations on the system are either all
completed successfully or all canceled successfully.
For example, consider a typical banking transaction that involves moving $700 from a customer's savings account to
a customer's checking account. This transaction involves at least two separate operations in computer terms: debiting
the savings account by $700, and crediting the checking account by $700. If one operation succeeds but the other
does not, the books of the bank will not balance at the end of the day. There must therefore be a way to ensure that
either both operations succeed or both fail, so that there is never any inconsistency in the bank's database as a whole.
Transaction processing links multiple individual operations in a single, indivisible transaction, and ensures that either
all operations in a transaction are completed without error, or none of them are. If some of the operations are
completed but errors occur when the others are attempted, the transaction-processing system "rolls back" all of the
operations of the transaction (including the successful ones), thereby erasing all traces of the transaction and
restoring the system to the consistent, known state that it was in before processing of the transaction began. If all
operations of a transaction are completed successfully, the transaction is committed by the system, and all changes to
the database are made permanent; the transaction cannot be rolled back once this is done.
Transaction processing guards against hardware and software errors that might leave a transaction partially
completed. If the computer system crashes in the middle of a transaction, the transaction processing system
guarantees that all operations in any uncommitted transactions are cancelled.
Generally, transactions are issued concurrently. If they overlap (i.e. need to touch the same portion of the database),
this can create conflicts. For example, if the customer mentioned in the example above has $150 in his savings
account and attempts to transfer $100 to a different person while at the same time moving $100 to the checking
account, only one of them can succeed. However, forcing transactions to be processed sequentially is inefficient.
Therefore, concurrent implementations of transaction processing is programmed to guarantee that the end result
reflects a conflict-free outcome, the same as could be reached if executing the transactions sequentially in any order
(a property called serializability). In our example, this means that no matter which transaction was issued first, either
the transfer to a different person or the move to the checking account succeeds, while the other one fails.

http://en.wikipedia.org/w/index.php?title=Computer_science
http://en.wikipedia.org/w/index.php?title=Online_transaction_processing
http://en.wikipedia.org/w/index.php?title=Filesystem
http://en.wikipedia.org/w/index.php?title=Commit_%28data_management%29
http://en.wikipedia.org/w/index.php?title=Serializability

Transaction processing 73

Methodology
The basic principles of all transaction-processing systems are the same. However, the terminology may vary from
one transaction-processing system to another, and the terms used below are not necessarily universal.

Rollback
Transaction-processing systems ensure database integrity by recording intermediate states of the database as it is
modified, then using these records to restore the database to a known state if a transaction cannot be committed. For
example, copies of information on the database prior to its modification by a transaction are set aside by the system
before the transaction can make any modifications (this is sometimes called a before image). If any part of the
transaction fails before it is committed, these copies are used to restore the database to the state it was in before the
transaction began.

Rollforward
It is also possible to keep a separate journal of all modifications to a database (sometimes called after images). This
is not required for rollback of failed transactions but it is useful for updating the database in the event of a database
failure, so some transaction-processing systems provide it. If the database fails entirely, it must be restored from the
most recent back-up. The back-up will not reflect transactions committed since the back-up was made. However,
once the database is restored, the journal of after images can be applied to the database (rollforward) to bring the
database up to date. Any transactions in progress at the time of the failure can then be rolled back. The result is a
database in a consistent, known state that includes the results of all transactions committed up to the moment of
failure.

Deadlocks
In some cases, two transactions may, in the course of their processing, attempt to access the same portion of a
database at the same time, in a way that prevents them from proceeding. For example, transaction A may access
portion X of the database, and transaction B may access portion Y of the database. If, at that point, transaction A
then tries to access portion Y of the database while transaction B tries to access portion X, a deadlock occurs, and
neither transaction can move forward. Transaction-processing systems are designed to detect these deadlocks when
they occur. Typically both transactions will be cancelled and rolled back, and then they will be started again in a
different order, automatically, so that the deadlock doesn't occur again. Or sometimes, just one of the deadlocked
transactions will be cancelled, rolled back, and automatically restarted after a short delay.
Deadlocks can also occur between three or more transactions. The more transactions involved, the more difficult
they are to detect, to the point that transaction processing systems find there is a practical limit to the deadlocks they
can detect.

http://en.wikipedia.org/w/index.php?title=Journal_%28computing%29

Transaction processing 74

Compensating transaction
In systems where commit and rollback mechanisms are not available or undesirable, a compensating transaction is
often used to undo failed transactions and restore the system to a previous state.

ACID criteria
Jim Gray defined properties of a reliable transaction system in the late 1970s under the acronym ACID — atomicity,
consistency, isolation, and durability.

Atomicity
A transaction’s changes to the state are atomic: either all happen or none happen. These changes include database
changes, messages, and actions on transducers.

Consistency
Consistency: A transaction is a correct transformation of the state. The actions taken as a group do not violate any of
the integrity constraints associated with the state.

Isolation
Even though transactions execute concurrently, it appears to each transaction T, that others executed either before T
or after T, but not both.

Durability
Once a transaction completes successfully (commits), its changes to the state survive failures.

Benefits
Transaction processing has these benefits:
•• It allows sharing of computer resources among many users
•• It shifts the time of job processing to when the computing resources are less busy
•• It avoids idling the computing resources without minute-by-minute human interaction and supervision
•• It is used on expensive classes of computers to help amortize the cost by keeping high rates of utilization of those

expensive resources

Implementations
Standard transaction-processing software, notably IBM's Information Management System, was first developed in
the 1960s, and was often closely coupled to particular database management systems. Client–server computing
implemented similar principles in the 1980s with mixed success. However, in more recent years, the distributed
client–server model has become considerably more difficult to maintain. As the number of transactions grew in
response to various online services (especially the Web), a single distributed database was not a practical solution. In
addition, most online systems consist of a whole suite of programs operating together, as opposed to a strict
client–server model where the single server could handle the transaction processing. Today a number of transaction
processing systems are available that work at the inter-program level and which scale to large systems, including
mainframes.
One well-known[citation needed] (and open) industry standard is the X/Open Distributed Transaction Processing (DTP)
(see also JTA the Java Transaction API). However, proprietary transaction-processing environments such as IBM's
CICS are still very popular[citation needed], although CICS has evolved to include open industry standards as well.

http://en.wikipedia.org/w/index.php?title=Compensating_transaction
http://en.wikipedia.org/w/index.php?title=Jim_Gray_%28computer_scientist%29
http://en.wikipedia.org/w/index.php?title=Consistency_%28database_systems%29%23Consistency
http://en.wikipedia.org/w/index.php?title=Software
http://en.wikipedia.org/w/index.php?title=IBM
http://en.wikipedia.org/w/index.php?title=Information_Management_System
http://en.wikipedia.org/w/index.php?title=Database_management_system
http://en.wikipedia.org/w/index.php?title=Client%E2%80%93server_model
http://en.wikipedia.org/w/index.php?title=WWW
http://en.wikipedia.org/w/index.php?title=Mainframe_computer
http://en.wikipedia.org/wiki/Citation_needed
http://en.wikipedia.org/w/index.php?title=X/Open_XA
http://en.wikipedia.org/w/index.php?title=Java_Transaction_API
http://en.wikipedia.org/w/index.php?title=CICS
http://en.wikipedia.org/wiki/Citation_needed

Transaction processing 75

The term 'Extreme Transaction Processing' (XTP) has been used to describe transaction processing systems with
uncommonly challenging requirements, particularly throughput requirements (transactions per second). Such
systems may be implemented via distributed or cluster style architectures.

References

External references
• Nuts and Bolts of Transaction Processing (http:/ / www. subbu. org/ articles/

nuts-and-bolts-of-transaction-processing)
• Managing Transaction Processing for SQL Database Integrity (http:/ / www. informit. com/ articles/ article.

aspx?p=174375)

Further reading
• Gerhard Weikum, Gottfried Vossen, Transactional information systems: theory, algorithms, and the practice of

concurrency control and recovery, Morgan Kaufmann, 2002, ISBN 1-55860-508-8
• Jim Gray, Andreas Reuter, Transaction Processing — Concepts and Techniques, 1993, Morgan Kaufmann, ISBN

1-55860-190-2
•• Philip A. Bernstein, Eric Newcomer, Principles of Transaction Processing, 1997, Morgan Kaufmann, ISBN

1-55860-415-4
•• Ahmed K. Elmagarmid (Editor), Transaction Models for Advanced Database Applications, Morgan-Kaufmann,

1992, ISBN 1-55860-214-3

http://en.wikipedia.org/w/index.php?title=Extreme_Transaction_Processing
http://www.subbu.org/articles/nuts-and-bolts-of-transaction-processing
http://www.subbu.org/articles/nuts-and-bolts-of-transaction-processing
http://www.informit.com/articles/article.aspx?p=174375
http://www.informit.com/articles/article.aspx?p=174375
http://en.wikipedia.org/w/index.php?title=Jim_Gray_%28computer_scientist%29

76

Concepts

ACID
In computer science, ACID (Atomicity, Consistency, Isolation, Durability) is a set of properties that guarantee that
database transactions are processed reliably. In the context of databases, a single logical operation on the data is
called a transaction. For example, a transfer of funds from one bank account to another, even involving multiple
changes such as debiting one account and crediting another, is a single transaction. The chosen initials refer to the
acid test.[citation needed]

Jim Gray defined these properties of a reliable transaction system in the late 1970s and developed technologies to
achieve them automatically.[1]

In 1983, Andreas Reuter and Theo Härder coined the acronym ACID to describe them.[2]

Characteristics

Atomicity
Atomicity requires that each transaction is "all or nothing": if one part of the transaction fails, the entire transaction
fails, and the database state is left unchanged. An atomic system must guarantee atomicity in each and every
situation, including power failures, errors, and crashes. To the outside world, a committed transaction appears (by its
effects on the database) to be indivisible ("atomic"), and an aborted transaction does not happen.

Consistency
The consistency property ensures that any transaction will bring the database from one valid state to another. Any
data written to the database must be valid according to all defined rules, including but not limited to constraints,
cascades, triggers, and any combination thereof. This does not guarantee correctness of the transaction in all ways
the application programmer might have wanted (that is the responsibility of application-level code) but merely that
any programming errors do not violate any defined rules.

Isolation
The isolation property ensures that the concurrent execution of transactions results in a system state that would be
obtained if transactions were executed serially, i.e. one after the other. Providing isolation is the main goal of
concurrency control. Depending on concurrency control method, the effects of an incomplete transaction might not
even be visible to another transaction.[citation needed]

Durability
Durability means that once a transaction has been committed, it will remain so, even in the event of power loss,
crashes, or errors. In a relational database, for instance, once a group of SQL statements execute, the results need to
be stored permanently (even if the database crashes immediately thereafter). To defend against power loss,
transactions (or their effects) must be recorded in a non-volatile memory.

http://en.wikipedia.org/w/index.php?title=Computer_science
http://en.wikipedia.org/w/index.php?title=Atomicity_%28database_systems%29
http://en.wikipedia.org/w/index.php?title=Consistency_%28database_systems%29
http://en.wikipedia.org/w/index.php?title=Isolation_%28database_systems%29
http://en.wikipedia.org/w/index.php?title=Durability_%28database_systems%29
http://en.wikipedia.org/w/index.php?title=Acid_test_%28gold%29
http://en.wikipedia.org/wiki/Citation_needed
http://en.wikipedia.org/w/index.php?title=Jim_Gray_%28computer_scientist%29
http://en.wikipedia.org/w/index.php?title=Atomicity_%28database_systems%29
http://en.wikipedia.org/w/index.php?title=Consistency_%28database_systems%29
http://en.wikipedia.org/w/index.php?title=Integrity_constraints
http://en.wikipedia.org/w/index.php?title=Cascading_rollback
http://en.wikipedia.org/w/index.php?title=Isolation_%28database_systems%29
http://en.wikipedia.org/wiki/Citation_needed
http://en.wikipedia.org/w/index.php?title=Durability_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Crash_%28computing%29
http://en.wikipedia.org/w/index.php?title=Non-volatile_memory

ACID 77

Examples
The following examples further illustrate the ACID properties. In these examples, the database table has two
columns, A and B. An integrity constraint requires that the value in A and the value in B must sum to 100. The
following SQL code creates a table as described above:

CREATE TABLE acidtest (A INTEGER, B INTEGER CHECK (A + B = 100));

Atomicity failure
Assume that a transaction attempts to subtract 10 from A and add 10 to B. This is a valid transaction, since the data
continue to satisfy the constraint after it has executed. However, assume that after removing 10 from A, the
transaction is unable to modify B. If the database retained A's new value, atomicity and the constraint would both be
violated. Atomicity requires that both parts of this transaction, or neither, be complete.

Consistency failure
Consistency is a very general term which demands that the data must meet all validation rules. In the previous
example, the validation is a requirement that A + B = 100. Also, it may be inferred that both A and B must be
integers. A valid range for A and B may also be inferred. All validation rules must be checked to ensure consistency.
Assume that a transaction attempts to subtract 10 from A without altering B. Because consistency is checked after
each transaction, it is known that A + B = 100 before the transaction begins. If the transaction removes 10 from A
successfully, atomicity will be achieved. However, a validation check will show that A + B = 90, which is
inconsistent with the rules of the database. The entire transaction must be cancelled and the affected rows rolled back
to their pre-transaction state. If there had been other constraints, triggers, or cascades, every single change operation
would have been checked in the same way as above before the transaction was committed.

Isolation failure
To demonstrate isolation, we assume two transactions execute at the same time, each attempting to modify the same
data. One of the two must wait until the other completes in order to maintain isolation.
Consider two transactions. T1 transfers 10 from A to B. T2 transfers 10 from B to A. Combined, there are four
actions:
• T1 subtracts 10 from A.
• T1 adds 10 to B.
• T2 subtracts 10 from B.
• T2 adds 10 to A.
If these operations are performed in order, isolation is maintained, although T2 must wait. Consider what happens if
T1 fails half-way through. The database eliminates T1's effects, and T2 sees only valid data.
By interleaving the transactions, the actual order of actions might be:
• T1 subtracts 10 from A.
• T2 subtracts 10 from B.
• T2 adds 10 to A.
• T1 adds 10 to B.
Again, consider what happens if T1 fails halfway through. By the time T1 fails, T2 has already modified A; it cannot
be restored to the value it had before T1 without leaving an invalid database. This is known as a write-write
failure,[citation needed] because two transactions attempted to write to the same data field. In a typical system, the
problem would be resolved by reverting to the last known good state, canceling the failed transaction T1, and
restarting the interrupted transaction T2 from the good state.

http://en.wikipedia.org/w/index.php?title=Integrity_constraints
http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/wiki/Citation_needed

ACID 78

Durability failure
Assume that a transaction transfers 10 from A to B. It removes 10 from A. It then adds 10 to B. At this point, a
"success" message is sent to the user. However, the changes are still queued in the disk buffer waiting to be
committed to the disk. Power fails and the changes are lost. The user assumes (understandably) that the changes have
been made.

Implementation
Processing a transaction often requires a sequence of operations that is subject to failure for a number of reasons. For
instance, the system may have no room left on its disk drives, or it may have used up its allocated CPU time.
There are two popular families of techniques: write ahead logging and shadow paging. In both cases, locks must be
acquired on all information that is updated, and depending on the level of isolation, possibly on all data that is read
as well. In write ahead logging, atomicity is guaranteed by copying the original (unchanged) data to a log before
changing the database.Wikipedia:Disputed statement That allows the database to return to a consistent state in the
event of a crash.
In shadowing, updates are applied to a partial copy of the database, and the new copy is activated when the
transaction commits.

Locking vs multiversioning
Many databases rely upon locking to provide ACID capabilities. Locking means that the transaction marks the data
that it accesses so that the DBMS knows not to allow other transactions to modify it until the first transaction
succeeds or fails. The lock must always be acquired before processing data, including data that are read but not
modified. Non-trivial transactions typically require a large number of locks, resulting in substantial overhead as well
as blocking other transactions. For example, if user A is running a transaction that has to read a row of data that user
B wants to modify, user B must wait until user A's transaction completes. Two phase locking is often applied to
guarantee full isolation.[citation needed]

An alternative to locking is multiversion concurrency control, in which the database provides each reading
transaction the prior, unmodified version of data that is being modified by another active transaction. This allows
readers to operate without acquiring locks, i.e. writing transactions do not block reading transactions, and readers do
not block writers. Going back to the example, when user A's transaction requests data that user B is modifying, the
database provides A with the version of that data that existed when user B started his transaction. User A gets a
consistent view of the database even if other users are changing data. One implementation, namely snapshot
isolation, relaxes the isolation property.

Distributed transactions
Guaranteeing ACID properties in a distributed transaction across a distributed database where no single node is
responsible for all data affecting a transaction presents additional complications. Network connections might fail, or
one node might successfully complete its part of the transaction and then be required to roll back its changes,
because of a failure on another node. The two-phase commit protocol (not to be confused with two-phase locking)
provides atomicity for distributed transactions to ensure that each participant in the transaction agrees on whether the
transaction should be committed or not.[citation needed] Briefly, in the first phase, one node (the coordinator)
interrogates the other nodes (the participants) and only when all reply that they are prepared does the coordinator, in
the second phase, formalize the transaction.

http://en.wikipedia.org/w/index.php?title=Disk_buffer
http://en.wikipedia.org/w/index.php?title=Write_ahead_logging
http://en.wikipedia.org/w/index.php?title=Shadow_paging
http://en.wikipedia.org/w/index.php?title=Lock_%28computer_science%29
http://en.wikipedia.org/wiki/Disputed_statement
http://en.wikipedia.org/w/index.php?title=Two_phase_locking
http://en.wikipedia.org/wiki/Citation_needed
http://en.wikipedia.org/w/index.php?title=Multiversion_concurrency_control
http://en.wikipedia.org/w/index.php?title=Snapshot_isolation
http://en.wikipedia.org/w/index.php?title=Snapshot_isolation
http://en.wikipedia.org/w/index.php?title=Distributed_transaction
http://en.wikipedia.org/w/index.php?title=Two-phase_commit_protocol
http://en.wikipedia.org/w/index.php?title=Two-phase_locking
http://en.wikipedia.org/w/index.php?title=Distributed_transaction
http://en.wikipedia.org/wiki/Citation_needed

ACID 79

References
[1] Gray, Jim, and Reuter, Andreas, Distributed Transaction Processing: Concepts and Techniques. Morgan Kaufmann, 1993. ISBN

1-55860-190-2.
[2][2] These four properties, atomicity, consistency, isolation, and durability (ACID), describe the major highlights of the transaction paradigm,

which has influenced many aspects of development in database systems.

Create, read, update and delete
In computer programming, create, read, update and delete (CRUD) (Sometimes called SCRUD with an "S" for
Search) are the four basic functions of persistent storage. Sometimes CRUD is expanded with the words retrieve
instead of read, modify instead of update, or destroy instead of delete. It is also sometimes used to describe user
interface conventions that facilitate viewing, searching, and changing information; often using computer-based forms
and reports. The term was likely first popularized by James Martin in his 1983 book Managing the Data-base
Environment. The acronym may be extended to CRUDL to cover listing of large data sets which bring additional
complexity such as pagination when the data sets are too large to hold easily in memory.
Another variation of CRUD is BREAD, an acronym for "Browse, Read, Edit, Add, Delete".

Database applications
The acronym CRUD refers to all of the major functions that are implemented in relational database applications.
Each letter in the acronym can map to a standard SQL statement and HTTP method:

Operation SQL HTTP

Create INSERT POST

Read (Retrieve) SELECT GET

Update (Modify) UPDATE PUT / PATCH

Delete (Destroy) DELETE DELETE

Making full use of HTTP methods, along with other constraints, is considered "RESTful".
Although a relational database provides a common persistence layer in software applications, numerous other
persistence layers exist. CRUD functionality can be implemented with an object database, an XML database, flat text
files, custom file formats, tape, or card, for example.

User interface
CRUD is also relevant at the user interface level of most applications. For example, in address book software, the
basic storage unit is an individual contact entry. As a bare minimum, the software must allow the user to:
•• Create or add new entries
•• Read, retrieve, search, or view existing entries
•• Update or edit existing entries
•• Delete/deactivate existing entries
Without at least these four operations, the software cannot be considered complete. Because these operations are so
fundamental, they are often documented and described under one comprehensive heading, such as "contact
management", "content management" or "contact maintenance" (or "document management" in general, depending
on the basic storage unit for the particular application).

http://en.wikipedia.org/w/index.php?title=Morgan_Kaufmann
http://en.wikipedia.org/w/index.php?title=Computer_programming
http://en.wikipedia.org/w/index.php?title=Persistent_storage
http://en.wikipedia.org/w/index.php?title=User_interface
http://en.wikipedia.org/w/index.php?title=User_interface
http://en.wikipedia.org/w/index.php?title=Information
http://en.wikipedia.org/w/index.php?title=Form_%28document%29
http://en.wikipedia.org/w/index.php?title=Report
http://en.wikipedia.org/w/index.php?title=James_Martin_%28author%29
http://en.wikipedia.org/w/index.php?title=CRUDL
http://en.wikipedia.org/w/index.php?title=Pagination
http://en.wikipedia.org/w/index.php?title=Application_software
http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=HTTP
http://en.wikipedia.org/w/index.php?title=Insert_%28SQL%29
http://en.wikipedia.org/w/index.php?title=POST_%28HTTP%29
http://en.wikipedia.org/w/index.php?title=Select_%28SQL%29
http://en.wikipedia.org/w/index.php?title=GET_%28HTTP%29
http://en.wikipedia.org/w/index.php?title=Update_%28SQL%29
http://en.wikipedia.org/w/index.php?title=PUT_%28HTTP%29
http://en.wikipedia.org/w/index.php?title=PATCH_%28HTTP%29
http://en.wikipedia.org/w/index.php?title=Delete_%28SQL%29
http://en.wikipedia.org/w/index.php?title=DELETE_%28HTTP%29
http://en.wikipedia.org/w/index.php?title=RESTful
http://en.wikipedia.org/w/index.php?title=Persistence_layer
http://en.wikipedia.org/w/index.php?title=Object_database
http://en.wikipedia.org/w/index.php?title=XML_database
http://en.wikipedia.org/w/index.php?title=Flat_file_database
http://en.wikipedia.org/w/index.php?title=Flat_file_database
http://en.wikipedia.org/w/index.php?title=Address_book
http://en.wikipedia.org/w/index.php?title=Contact_%28social%29

Create, read, update and delete 80

Notes

Null (SQL)

The Greek lowercase omega (ω)
character is used to represent Null in

database theory.

Null is a special marker used in Structured Query Language (SQL) to indicate
that a data value does not exist in the database. Introduced by the creator of the
relational database model, E. F. Codd, SQL Null serves to fulfill the requirement
that all true relational database management systems (RDBMS) support a
representation of "missing information and inapplicable information". Codd also
introduced the use of the lowercase Greek omega (ω) symbol to represent Null
in database theory. NULL is also an SQL reserved keyword used to identify the
Null special marker.

Null has been the focus of controversy and a source of debate because of its
associated three-valued logic (3VL), special requirements for its use in SQL
joins, and the special handling required by aggregate functions and SQL
grouping operators. Computer science professor Ron van der Meyden
summarized the various issues as: "The inconsistencies in the SQL standard mean that it is not possible to ascribe
any intuitive logical semantics to the treatment of nulls in SQL."[1] Although various proposals have been made for
resolving these issues, the complexity of the alternatives has prevented their widespread adoption.

For people new to the subject, a good way to remember what null means is to remember that in terms of information,
"lack of a value" is not the same thing as "a value of zero"; similarly, "lack of an answer" is not the same thing as "an
answer of no". For example, consider the question "How many books does Juan own?" The answer may be "zero"
(we know that he owns none) or "null" (we do not know how many he owns, or doesn't own). In a database table, the
column reporting this answer would start out with a value of null, and it would not be updated with "zero" until we
have ascertained that Juan owns no books.

History
E. F. Codd mentioned nulls as a method of representing missing data in the relational model in an 1975 paper in the
FDT Bulletin of ACM-SIGMOD. Codd's paper that is most commonly cited in relation with the semantics of Null (as
adopted in SQL) is his 1979 paper in the ACM Transactions on Database Systems, in which he also introduced his
Relational Model/Tasmania, although much of the other proposals from the latter paper have remained obscure.
Section 2.3 of his 1979 paper details the semantics of Null propagation in arithmetic operations and well as
comparisons employing a ternary (three-valued) logic when comparing to nulls; it also details the treatment of Nulls
on other set operations (the latter issue still controversial today). In database theory circles, the original proposal of
Codd (1975, 1979) is now referred to as "Krokk tables". Codd later reinforced his requirement that all RDBMS
support Null to indicate missing data in a 1985 two-part article published in ComputerWorld magazine.
The 1986 SQL standard basically adopted Codd's proposal after an implementation prototype in IBM System R.
Although Don Chamberlin recognized nulls (alongside duplicate rows) as one of the most controversial features of
SQL, he defended the design of Nulls in SQL invoking the pragmatic arguments that it was the least expensive form
of system support for missing information, saving the programmer from many duplicative application-level checks
(see semipredicate problem) while at the same time providing the database designer with the option not to use nulls
if he so desires; for example, in order to avoid well known anomalies (discussed in the semantics section of this
article). Chamberlin also argued that besides providing some missing-value functionality, practical experience with
Nulls also led to other language features which rely on Nulls, like certain grouping constructs and outer joins.

http://en.wikipedia.org/w/index.php?title=Omega
http://en.wikipedia.org/w/index.php?title=Database_theory
http://en.wikipedia.org/w/index.php?title=File%3ADb_null.png
http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=Edgar_F._Codd
http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=RDBMS
http://en.wikipedia.org/w/index.php?title=Greek_alphabet
http://en.wikipedia.org/w/index.php?title=Omega
http://en.wikipedia.org/w/index.php?title=Database_theory
http://en.wikipedia.org/w/index.php?title=Reserved_word
http://en.wikipedia.org/w/index.php?title=Three-valued_logic
http://en.wikipedia.org/w/index.php?title=Join_%28SQL%29
http://en.wikipedia.org/w/index.php?title=Join_%28SQL%29
http://en.wikipedia.org/w/index.php?title=Information
http://en.wikipedia.org/w/index.php?title=Association_for_Computing_Machinery
http://en.wikipedia.org/w/index.php?title=SIGMOD
http://en.wikipedia.org/w/index.php?title=ACM_Transactions_on_Database_Systems
http://en.wikipedia.org/w/index.php?title=Relational_Model/Tasmania
http://en.wikipedia.org/w/index.php?title=Ternary_logic
http://en.wikipedia.org/w/index.php?title=Database_theory
http://en.wikipedia.org/w/index.php?title=ComputerWorld
http://en.wikipedia.org/w/index.php?title=IBM_System_R
http://en.wikipedia.org/w/index.php?title=Don_Chamberlin
http://en.wikipedia.org/w/index.php?title=Semipredicate_problem

Null (SQL) 81

Finally, he argued that in practice Nulls also end up being used a quick way to patch an existing schema when it
needs to evolve beyond its original intent, coding not for missing but rather for inapplicable information; for
example, a database that quickly needs to support electric cars while having a miles-per-gallon column.
Codd indicated in his 1990 book The Relational Model for Database Management, Version 2 that the single Null
mandated by the SQL standard was inadequate, and should be replaced by two separate Null-type markers to
indicate the reason why data is missing. In Codd's book, these two Null-type markers are referred to as 'A-Values'
and 'I-Values', representing 'Missing But Applicable' and 'Missing But Inapplicable', respectively. Codd's
recommendation would have required SQL's logic system be expanded to accommodate a four-valued logic system.
Because of this additional complexity, the idea of multiple Null-type values has not gained widespread acceptance in
the database practitioners' domain. It remains an active field of research though, with numerous papers still being
published.

Null propagation

Arithmetic operations
Because Null is not a data value, but a marker for an unknown value, using mathematical operators on Null results in
an unknown value, which is represented by Null. In the following example, multiplying 10 by Null results in Null:

10 * NULL -- Result is NULL

This can lead to unanticipated results. For instance, when an attempt is made to divide Null by zero, platforms may
return Null instead of throwing an expected "data exception - division by zero". Though this behavior is not defined
by the ISO SQL standard many DBMS vendors treat this operation similarly. For instance, the Oracle, PostgreSQL,
MySQL Server, and Microsoft SQL Server platforms all return a Null result for the following:

NULL / 0

String concatenation
String concatenation operations, which are common in SQL, also result in Null when one of the operands is Null.
The following example demonstrates the Null result returned by using Null with the SQL || string concatenation
operator.

'Fish ' || NULL || 'Chips' -- Result is NULL

This is not true for all database implementations. In an Oracle RDBMS for example NULL and the empty string are
considered the same thing and therefore 'Fish ' || NULL || 'Chips' results in 'Fish Chips'.

Comparisons with NULL and the three-valued logic (3VL)
Since Null is not a member of any data domain, it is not considered a "value", but rather a marker (or placeholder)
indicating the absence of value. Because of this, comparisons with Null can never result in either True or False, but
always in a third logical result, Unknown. The logical result of the expression below, which compares the value 10
to Null, is Unknown:

SELECT 10 = NULL -- Results in Unknown

However, certain operations on Null can return values if the value of Null is not relevant to the outcome of the
operation. Consider the following example:

SELECT NULL OR TRUE -- Results in True

http://en.wikipedia.org/w/index.php?title=Concatenation
http://en.wikipedia.org/w/index.php?title=Data_domain
http://en.wikipedia.org/w/index.php?title=Undefined_value

Null (SQL) 82

In this case, the fact that the value on the left of OR is unknowable is irrelevant, because the outcome of the OR
operation would be True regardless of the value on the left.
SQL implements three logical results, so SQL implementations must provide for a specialized three-valued logic
(3VL). The rules governing SQL three-valued logic are shown in the tables below (p and q represent logical states)"
The truth tables SQL uses for AND, OR, and NOT correspond to a common fragment of the Kleene and
Łukasiewicz three-valued logic (which differ in their definition of implication, however SQL defines no such
operation).

p q p OR q p AND q p = q

True True True True True

True False True False False

True Unknown True Unknown Unknown

False True True False False

False False False False True

False Unknown Unknown False Unknown

Unknown True True Unknown Unknown

Unknown False Unknown False Unknown

Unknown Unknown Unknown Unknown Unknown

p NOT p

True False

False True

Unknown Unknown

Effect of Unknown in WHERE clauses
SQL three-valued logic is encountered in Data Manipulation Language (DML) in comparison predicates of DML
statements and queries. The WHERE clause causes the DML statement to act on only those rows for which the
predicate evaluates to True. Rows for which the predicate evaluates to either False or Unknown are not acted on by
INSERT, UPDATE, or DELETE DML statements, and are discarded by SELECT queries. Interpreting Unknown
and False as the same logical result is a common error encountered while dealing with Nulls. The following simple
example demonstrates this fallacy:

SELECT *

FROM t

WHERE i = NULL;

The example query above logically always returns zero rows because the comparison of the i column with Null
always returns Unknown, even for those rows where i is Null. The Unknown result causes the SELECT statement to
summarily discard each and every row. (However, in practice, some SQL tools will retrieve rows using a comparison
with Null.)

http://en.wikipedia.org/w/index.php?title=Ternary_logic
http://en.wikipedia.org/w/index.php?title=Ternary_logic
http://en.wikipedia.org/w/index.php?title=Data_Manipulation_Language
http://en.wikipedia.org/w/index.php?title=Where_%28SQL%29
http://en.wikipedia.org/w/index.php?title=Insert_%28SQL%29
http://en.wikipedia.org/w/index.php?title=Update_%28SQL%29
http://en.wikipedia.org/w/index.php?title=Delete_%28SQL%29
http://en.wikipedia.org/w/index.php?title=Select_%28SQL%29

Null (SQL) 83

Null-specific and 3VL-specific comparison predicates
Basic SQL comparison operators always return Unknown when comparing anything with Null, so the SQL standard
provides for two special Null-specific comparison predicates. The IS NULL and IS NOT NULL predicates
(which use a postfix syntax) test whether data is, or is not, Null.
The SQL standard contains an extension F571 "Truth value tests" that introduces three additional logical unary
operators (six in fact, if we count their negation, which is part of their syntax), also using postfix notation. They have
the following truth tables:[2]

p true false unknown

p IS TRUE true false false

p IS NOT TRUE false true true

p IS FALSE false true false

p IS NOT FALSE true false true

p IS UNKNOWN false false true

p IS NOT UNKNOWN true true false

The F571 extension is orthogonal to the presence of the boolean datatype in SQL (discussed later in this article) and,
despite syntactic similarities, F571 does not introduce boolean or three-valued literals in the language. The F571
extension was actually present in SQL92, well before the boolean datatype was introduced to the standard in 1999.
The F571 extension is implemented by few systems however; PostgreSQL is one of those implementing it.
The addition of IS UNKNOWN to the other operators of SQL's three-valued logic makes the SQL three-valued logic
functionally complete,[3] meaning its logical operators can express (in combination) any conceivable three-valued
logical function.
On systems which don't support the F571 extension, it is possible to emulate IS UNKNOWN p by going over every
argument that could make the expression p Unknown and test those arguments with IS NULL or other
NULL-specific functions, although this may be more cumbersome.

Law of the excluded fourth (in WHERE clauses)
In SQL's three-valued logic the law of the excluded middle, p OR NOT p, no longer evaluates to true for all p. More
precisely, in SQL's three-valued logic p OR NOT p is unknown precisely when p is unknown and true otherwise.
Because direct comparisons with Null result in the unknown logical value, the following query

SELECT * FROM stuff WHERE (x = 10) OR NOT (x = 10);

is not equivalent in SQL with

SELECT * FROM stuff;

if the column x contains any Nulls; in that case the second query would return some rows the first one does not
return, namely all those in which x is Null. In classical two-valued logic, the law of the excluded middle would allow
the simplification of the WHERE clause predicate, in fact its elimination. Attempting to apply the law of the
excluded middle to SQL's 3VL is effectively a false dichotomy. The second query is actually equivalent with:

SELECT * FROM stuff;

-- is (because of 3VL) equivalent to:

SELECT * FROM stuff WHERE (x = 10) OR NOT (x = 10) OR x IS NULL;

Thus, to correctly simplify the first statement in SQL requires that we return all rows in which x is not null.

http://en.wikipedia.org/w/index.php?title=Reverse_Polish_notation
http://en.wikipedia.org/w/index.php?title=Literal_%28computer_programming%29
http://en.wikipedia.org/w/index.php?title=SQL92
http://en.wikipedia.org/w/index.php?title=Functionally_complete
http://en.wikipedia.org/w/index.php?title=Law_of_excluded_middle
http://en.wikipedia.org/w/index.php?title=False_dilemma

Null (SQL) 84

SELECT * FROM stuff WHERE x IS NOT NULL;

From the above, it's easy observe that for SQL's WHERE clause a tautology similar to the law of excluded middle
can be written. Assuming the IS UNKNOWN operator is present, this is p OR (NOT p) OR (p IS UNKNOWN) is
true for every predicate p. Among logicians, this is called law of excluded fourth.
There are some SQL expressions in which it is less obvious where the false dilemma occurs, for example:

SELECT 'ok' WHERE 1 NOT IN (SELECT CAST (NULL AS INTEGER))

UNION

SELECT 'ok' WHERE 1 IN (SELECT CAST (NULL AS INTEGER));

produces no rows because IN is translates to an iterated version of equality over the argument set and 1<>NULL is
Unknown, just a as 1=NULL is Unknown. (The CAST in this example is needed only in some SQL implementations
like PostgreSQL, which would reject it with a type checking error otherwise. In many systems plain SELECT NULL
works in the subquery.) The missing case above is of course:

SELECT 'ok' WHERE (1 IN (SELECT CAST (NULL AS INTEGER))) IS UNKNOWN;

Effect of Null and Unknown in other constructs

Joins

Joins evaluate using the same comparison rules as for WHERE clauses. Therefore, care must be taken when using
nullable columns in SQL join criteria. In particular a table containing any nulls is not equal with a natural self-join of
itself, meaning that whereas is true for any relation R in relational algebra, a SQL self-join will
exclude all rows having a null value anywhere.[4] An example of this behavior is given in the section analyzing the
missing-value semantics of Nulls.
The SQL COALESCE function or CASE expressions can be used to "simulate" Null equality in join criteria, and the
IS NULL and IS NOT NULL predicates can be used in the join criteria as well. The following predicate tests for
equality of the values A and B and treats Nulls as being equal.

(A = B) OR (A IS NULL AND B IS NULL)

CASE expressions

SQL provides two flavours of conditional expressions. One is called "simple CASE" and operates like a switch
statement. The other is called a "searched CASE" in the standard, and operates like an if...elseif.
The simple CASE expressions use implicit equality comparisons which operate under the same rules as the DML
WHERE clause rules for Null. Thus, a simple CASE expression cannot check for the existence of Null directly. A
check for Null in a simple CASE expression always results in Unknown, as in the following:

SELECT CASE i WHEN NULL THEN 'Is Null' -- This will never be returned

 WHEN 0 THEN 'Is Zero' -- This will be returned when i

 = 0

 WHEN 1 THEN 'Is One' -- This will be returned when i

 = 1

 END

FROM t;

Because the expression i = NULL evaluates to Unknown no matter what value column i contains (even if it
contains Null), the string 'Is Null' will never be returned.

http://en.wikipedia.org/w/index.php?title=Tautology_%28logic%29
http://en.wikipedia.org/w/index.php?title=Law_of_excluded_fourth
http://en.wikipedia.org/w/index.php?title=Case_%28SQL%29
http://en.wikipedia.org/w/index.php?title=Switch_statement
http://en.wikipedia.org/w/index.php?title=Switch_statement
http://en.wikipedia.org/w/index.php?title=Conditional_%28programming%29%23Else_if

Null (SQL) 85

On the other hand, a "searched" CASE expression can use predicates like IS NULL and IS NOT NULL in its
conditions. The following example shows how to use a searched CASE expression to properly check for Null:

SELECT CASE WHEN i IS NULL THEN 'Null Result' -- This will be returned

 when i is NULL

 WHEN i = 0 THEN 'Zero' -- This will be returned

 when i = 0

 WHEN i = 1 THEN 'One' -- This will be returned

 when i = 1

 END

FROM t;

In the searched CASE expression, the string 'Null Result' is returned for all rows in which i is Null.
Oracle's dialect of SQL provides a built-in function DECODE which can be used instead of the simple CASE
expressions and considers two nulls equal.

SELECT DECODE(i, NULL, 'Null Result', 0, 'Zero', 1, 'One') FROM t;

Finally, all these constructs return a NULL if no match is found; they have a default ELSE NULL clause.

IF statements in procedural extensions

SQL/PSM (SQL Persistent Stored Modules) defines procedural extensions for SQL, such as the IF statement.
However, the major SQL vendors have historically included their own proprietary procedural extensions. Procedural
extensions for looping and comparisons operate under Null comparison rules similar to those for DML statements
and queries. The following code fragment, in ISO SQL standard format, demonstrates the use of Null 3VL in an IF
statement.

IF i = NULL THEN

 SELECT 'Result is True'

ELSEIF NOT(i = NULL) THEN

 SELECT 'Result is False'

ELSE

 SELECT 'Result is Unknown';

The IF statement performs actions only for those comparisons that evaluate to True. For statements that evaluate to
False or Unknown, the IF statement passes control to the ELSEIF clause, and finally to the ELSE clause. The
result of the code above will always be the message 'Result is Unknown' since the comparisons with Null
always evaluate to Unknown.

Analysis of SQL Null missing-value semantics
The groundbreaking work of T. Imielinski and W. Lipski (1984) provided a framework in which to evaluate the
intended semantics of various proposals to implement missing-value semantics. This section roughly follows chapter
19 the "Alice" textbook. A similar presentation appears in the review of Ron van der Meyden, §10.4.

In selections and projections: weak representation
Constructs representing missing information, such as Codd tables, are actually intended to represent a set of
relations, one for each possible instantiation of their parameters; in the case of Codd tables, this means replacement
of Nulls with some concrete value. For example,

http://en.wikipedia.org/w/index.php?title=SQL/PSM
http://en.wikipedia.org/w/index.php?title=Procedural_programming
http://en.wikipedia.org/w/index.php?title=Conditional_%28programming%29
http://en.wikipedia.org/w/index.php?title=Conditional_%28programming%29
http://en.wikipedia.org/w/index.php?title=Conditional_%28programming%29

Null (SQL) 86

the Codd table

Name Age

George 43

Harriet NULL

Charles 56

may represent the relation

Name Age

George 43

Harriet 22

Charles 56

or equally well the relation

Name Age

George 43

Harriet 37

Charles 56

A construct (such as a Codd table) is said to be a strong representation system (of missing information) if any
answer to a query made on the construct can be particularized to obtain an answer for any corresponding query on
the relations it represents, which are seen as models of the construct. More precisely, if is a query formula in the
relational algebra (of "pure" relations) and if is its lifting to a construct intended to represent missing information,
a strong representation has the property that for any query q and (table) construct T, lifts all the answers to the
construct, i.e.:

(The above has to hold for queries taking any number of tables as arguments, but the restriction to one table suffices
for this discussion.) Clearly Codd tables do not have this strong property if selections and projections are considered
as part of the query language. For example, all the answers to

SELECT * FROM Emp WHERE Age = 22;

should include the possibility that a relation like EmpH22 may exist. However Codd tables cannot represent the
disjunction "result with possibly 0 or 1 rows". A device, mostly of theoretical interest, called conditional table (or
c-table) can however represent such an answer:

Result

Name Age condition

Harriet ω1 ω1 = 22

where the condition column is interpreted as the row doesn't exist if the condition is false. It turns out that because
the formulas in the condition column of a c-table can be arbitrary propositional logic formulas, an algorithm for the
problem whether a c-table represents some concrete relation has a co-NP-complete complexity, thus is of little
practical value.
A weaker notion of representation is therefore desirable. Imielinski and Lipski introduced the notion of weak
representation, which essentially allows (lifted) queries over a construct to return a representation only for sure
information, i.e. if it's valid for all "possible world" instantiations (models) of the construct. Concretely, a construct
is a weak representation system if

The right-hand side of the above equation is the sure information, i.e. information which can be certainly extracted
from the database regardless of what values are used to replace Nulls in the database. In the example we considered
above, it's easy to see that the intersection of all possible models (i.e. the sure information) of the query selecting
WHERE Age = 22 is actually empty because, for instance, the (unlifted) query returns no rows for the relation
EmpH37. More generally, it was shown by Imielinski and Lipski that Codd tables are a weak representation system
if the query language is restricted to projections, selections (and renaming of columns). However, as soon as we add
either joins or unions to the query language, even this weak property is lost, as evidenced in the next section.

http://en.wikipedia.org/w/index.php?title=Structure_%28mathematical_logic%29
http://en.wikipedia.org/w/index.php?title=Conditional_table
http://en.wikipedia.org/w/index.php?title=Propositional_logic
http://en.wikipedia.org/w/index.php?title=Co-NP-complete
http://en.wikipedia.org/w/index.php?title=Possible_world

Null (SQL) 87

If joins or unions are considered: not even weak representation
Let us consider the following query over the same Codd table Emp from the previous section:

SELECT Name FROM Emp WHERE Age = 22

UNION

SELECT Name FROM Emp WHERE Age <> 22;

Whatever concrete value one would choose for the NULL age of Harriet, the above query will return the full column
of names of any model of Emp, but when the (lifted) query is ran on Emp itself, Harriet will always be missing, i.e.
we have:

Query result on Emp:
Name

George

Charles

Query result on any model of Emp:
Name

George

Harriet

Charles

Thus when unions are added to the query language, Codd tables are not even a weak representation system of
missing information, meaning that queries over them don't even report all sure information. It's important to note
here that semantics of UNION on Nulls, which are discussed in a later section, did not even come into play in this
query. The "forgetful" nature of the two sub-queries was all that it took to guarantee that some sure information went
unreported when the above query was ran on the Codd table Emp.
For natural joins, the example needed to show that sure information may be unreported by some query is slightly
more complicated. Consider the table

J

F1 F2 F3

11 NULL 13

21 NULL 23

31 32 33

and the query

SELECT F1, F3 FROM

 (SELECT F1, F2 FROM J) AS F12

 NATURAL JOIN

 (SELECT F2, F3 FROM J) AS F23;

Query result on J:
F1 F3

31 33

Query result on any model of J:
F1 F3

11 13

21 23

31 33

The intuition for what happens above is that the Codd tables representing the projections in the subqueries lose track
of the fact that the Null values in the columns F12.F2 and F23.F2 are actually copies of the originals in the table J.

http://en.wikipedia.org/w/index.php?title=Natural_join

Null (SQL) 88

This observation suggests that a relatively simple improvement of Codd tables (which works correctly for this
example) would be to use Skolem constants (meaning Skolem functions which are also constant functions), say ω12
and ω22 instead of a single NULL symbol. Such an approach, called v-tables or Naive tables, is computationally less
expensive that the c-tables discussed above. However it is still not a complete solution for incomplete information in
the sense that v-tables are only a weak representation for queries not using any negations in selection (and not using
any set difference either). The first example considered in this section is using a negative selection clause, WHERE
Age <> 22, so it is also an example where v-tables queries would not report sure information.

Check constraints and foreign keys
The primary place in which SQL three-valued logic intersects with SQL Data Definition Language (DDL) is in the
form of check constraints. A check constraint placed on a column operates under a slightly different set of rules than
those for the DML WHERE clause. While a DML WHERE clause must evaluate to True for a row, a check constraint
must not evaluate to False. (From a logic perspective, the designated values are True and Unknown.) This means that
a check constraint will succeed if the result of the check is either True or Unknown. The following example table
with a check constraint will prohibit any integer values from being inserted into column i, but will allow Null to be
inserted since the result of the check will always evaluate to Unknown for Nulls.

CREATE TABLE t (

 i INTEGER,

 CONSTRAINT ck_i CHECK (i < 0 AND i = 0 AND i > 0));

Because of the change in designated values relative to the WHERE clause, from a logic perspective the law of
excluded middle is a tautology for CHECK constraints, meaning CHECK (p OR NOT p) always succeeds.
Furthermore, assuming Nulls are to be interpreted as existing but unknown values, some pathological CHECKs like
the one above allow insertion of Nulls that could never be replaced by any non-null value.
In order to constrain a column to reject Nulls, the NOT NULL constraint can be applied, as shown in the example
below. The NOT NULL constraint is semantically equivalent to a check constraint with an IS NOT NULL
predicate.

CREATE TABLE t (i INTEGER NOT NULL);

By default check constraints against foreign keys succeed if any of the fields in such keys are Null. For example the
table

CREATE TABLE Books

(title VARCHAR(100),

 author_last VARCHAR(20),

 author_first VARCHAR(20),

FOREIGN KEY (author_last, author_first)

 REFERENCES Authors(last_name, first_name));

would allow insertion of rows where author_last or author_first are NULL irrespective of how the table Authors is
defined or what it contains. More precisely, a null in any of these fields would allow any value in the other one, even
on that is not found in Authors table. For example if Authors contained only ('Doe', 'John'), then ('Smith', NULL)
would satisfy the foreign key constraint. SQL-92 added two extra options for narrowing down the matches in such
cases. If MATCH PARTIAL is added after the REFERENCES declaration then any non-null must match the foreign
key, e. g. ('Doe', NULL) would still match, but ('Smith', NULL) would not. Finally, if MATCH FULL is added then
('Smith', NULL) would not match the constraint either, but (NULL, NULL) would still match it.

http://en.wikipedia.org/w/index.php?title=Skolem_function
http://en.wikipedia.org/w/index.php?title=Constant_function
http://en.wikipedia.org/w/index.php?title=Data_Definition_Language
http://en.wikipedia.org/w/index.php?title=Check_constraint
http://en.wikipedia.org/w/index.php?title=Designated_value
http://en.wikipedia.org/w/index.php?title=Check_constraint
http://en.wikipedia.org/w/index.php?title=SQL-92

Null (SQL) 89

Outer joins
SQL outer joins, including left outer joins, right outer joins, and full outer joins, automatically produce Nulls as
placeholders for missing values in related tables. For left outer joins, for instance, Nulls are produced in place of
rows missing from the table appearing on the right-hand side of the LEFT OUTER JOIN operator. The following
simple example uses two tables to demonstrate Null placeholder production in a left outer join.
The first table (Employee) contains employee ID numbers and names, while the second table (PhoneNumber)
contains related employee ID numbers and phone numbers, as shown below.

ID LastName FirstName

1 Johnson Joe

2 Lewis Larry

3 Thompson Thomas

4 Patterson Patricia

|+ Employee

ID Number

1 555-2323

3 555-9876

|+
PhoneNumber

The following sample SQL query performs a left outer join on these two tables.

SELECT e.ID, e.LastName, e.FirstName, pn.Number

FROM Employee e

LEFT OUTER JOIN PhoneNumber pn

ON e.ID = pn.ID;

The result set generated by this query demonstrates how SQL uses Null as a placeholder for values missing from the
right-hand (PhoneNumber) table, as shown below.

ID LastName FirstName Number

1 Johnson Joe 555-2323

2 Lewis Larry NULL

3 Thompson Thomas 555-9876

4 Patterson Patricia NULL

|+ Query result

Aggregate functions
SQL defines aggregate functions to simplify server-side aggregate calculations on data. Except for the COUNT(*)
function, all aggregate functions perform a Null-elimination step, so that Null values are not included in the final
result of the calculation.
Note that the elimination of Null values is not equivalent to replacing those values with zero. For example, in the
following table, AVG(i) (the average of the values of i) will give a different result from that of AVG(j):

http://en.wikipedia.org/w/index.php?title=Join_%28SQL%29
http://en.wikipedia.org/w/index.php?title=Telephone_number
http://en.wikipedia.org/w/index.php?title=Aggregate_function

Null (SQL) 90

i j

150 150

200 200

250 250

NULL 0

|+ Table
Here AVG(i) is 200 (the average of 150, 200, and 250), while AVG(j) is 150 (the average of 150, 200, 250, and
0). A well-known side effect of this is that in SQL AVG(z) is not equivalent with SUM(z)/COUNT(*).

When two nulls are equal: grouping, sorting, and some set operations
Because SQL:2003 defines all Null markers as being unequal to one another, a special definition was required in
order to group Nulls together when performing certain operations. SQL defines "any two values that are equal to one
another, or any two Nulls", as "not distinct". This definition of not distinct allows SQL to group and sort Nulls when
the GROUP BY clause (and other keywords that perform grouping) are used.
Other SQL operations, clauses, and keywords use "not distinct" in their treatment of Nulls. These include the
following:
• PARTITION BY clause of ranking and windowing functions like ROW_NUMBER
• UNION, INTERSECT, and EXCEPT operator, which treat NULLs as the same for row comparison/elimination

purposes
• DISTINCT keyword used in SELECT queries
The principle that Nulls aren't equal to each other (but rather that the result is Unknown) is effectively violated in the
SQL specification for the UNION operator, which does identify nulls with each other. Consequently, some set
operations in SQL, like union or difference, may produce results not representing sure information, unlike operations
involving explicit comparisons with NULL (e.g. those in a WHERE clause discussed above). In Codd's 1979
proposal (which was basically adopted by SQL92) this semantic inconsistency is rationalized by arguing that
removal of duplicates in set operations happens "at a lower level of detail than equality testing in the evaluation of
retrieval operations."
The SQL standard does not explicitly define a default sort order for Nulls. Instead, on conforming systems, Nulls can
be sorted before or after all data values by using the NULLS FIRST or NULLS LAST clauses of the ORDER BY
list, respectively. Not all DBMS vendors implement this functionality, however. Vendors who do not implement this
functionality may specify different treatments for Null sorting in the DBMS.

Effect on index operation
Some SQL products do not index keys containing NULL values. For instance, PostgreSQL versions prior to 8.3 did
not, with the documentation for a B-tree index stating that

B-trees can handle equality and range queries on data that can be sorted into some ordering. In particular, the
PostgreSQL query planner will consider using a B-tree index whenever an indexed column is involved in a
comparison using one of these operators: < ≤ = ≥ >
Constructs equivalent to combinations of these operators, such as BETWEEN and IN, can also be
implemented with a B-tree index search. (But note that IS NULL is not equivalent to = and is not indexable.)

In cases where the index enforces uniqueness, NULL values are excluded from the index and uniqueness is not
enforced between NULL values. Again, quoting from the PostgreSQL documentation:

http://en.wikipedia.org/w/index.php?title=SQL:2003
http://en.wikipedia.org/w/index.php?title=PostgreSQL
http://en.wikipedia.org/w/index.php?title=B-tree
http://en.wikipedia.org/w/index.php?title=PostgreSQL

Null (SQL) 91

When an index is declared unique, multiple table rows with equal indexed values will not be allowed. Null
values are not considered equal. A multicolumn unique index will only reject cases where all of the indexed
columns are equal in two rows.

This is consistent with the SQL:2003-defined behavior of scalar Null comparisons.
Another method of indexing Nulls involves handling them as not distinct in accordance with the SQL:2003-defined
behavior. For example, Microsoft SQL Server documentation states the following:

For indexing purposes, NULL values compare as equal. Therefore, a unique index, or UNIQUE constraint,
cannot be created if the key values are NULL in more than one row. Select columns that are defined as NOT
NULL when columns for a unique index or unique constraint are chosen.

Both of these indexing strategies are consistent with the SQL:2003-defined behavior of Nulls. Because indexing
methodologies are not explicitly defined by the SQL:2003 standard, indexing strategies for Nulls are left entirely to
the vendors to design and implement.

Null-handling functions
SQL defines two functions to explicitly handle Nulls: NULLIF and COALESCE. Both functions are abbreviations
for searched CASE expressions.

NULLIF
The NULLIF function accepts two parameters. If the first parameter is equal to the second parameter, NULLIF
returns Null. Otherwise, the value of the first parameter is returned.

NULLIF(value1, value2)

Thus, NULLIF is an abbreviation for the following CASE expression:

CASE WHEN value1 = value2 THEN NULL ELSE value1 END

COALESCE
The COALESCE function accepts a list of parameters, returning the first non-Null value from the list:

COALESCE(value1, value2, value3, ...)

COALESCE is defined as shorthand for the following SQL CASE expression:

CASE WHEN value1 IS NOT NULL THEN value1

 WHEN value2 IS NOT NULL THEN value2

 WHEN value3 IS NOT NULL THEN value3

 ...

 END

Some SQL DBMSs implement vendor-specific functions similar to COALESCE. Some systems (e.g. Transact-SQL)
implement an ISNULL function, or other similar functions that are functionally similar to COALESCE. (See Is
functions for more on the IS functions in Transact-SQL.)

http://en.wikipedia.org/w/index.php?title=SQL:2003
http://en.wikipedia.org/w/index.php?title=Microsoft_SQL_Server
http://en.wikipedia.org/w/index.php?title=Case_%28SQL%29
http://en.wikipedia.org/w/index.php?title=Transact-SQL
http://en.wikipedia.org/w/index.php?title=Is_functions
http://en.wikipedia.org/w/index.php?title=Is_functions

Null (SQL) 92

NVL
The Oracle NVL function accepts two parameters. It returns the first non-NULL parameter or NULL if all
parameters are NULL.
A COALESCE expression can be converted into an equivalent NVL expression thus:

COALESCE (val1, ... , val{n})

turns into:

NVL(val1 , NVL(val2 , NVL(val3 , … , NVL (val{n-1} , val{n}) …)))

A use case of this function is to replace in an expression a NULL value by a fixed value like in NVL(SALARY, 0)
which says, 'if SALARY contains a NULL value, replace it with 0'.
There is, however, one notable exception. In most implementations, COALESCE evaluates its parameters until it
reaches the first non-NULL one, while NVL evaluates all of its parameters. This is important for several reasons. A
parameter after the first non-NULL parameter could be a function, which could either be computationally expensive,
invalid, or could create unexpected side effects.

Data typing of Null and Unknown
The NULL literal is untyped in SQL, meaning that it is not designated as an integer, character, or any other specific
data type. Because of this, it is sometimes mandatory (or desirable) to explicitly convert Nulls to a specific data type.
For instance, if overloaded functions are supported by the RDBMS, SQL might not be able to automatically resolve
to the correct function without knowing the data types of all parameters, including those for which Null is passed.
Conversion from the NULL literal to a Null of a specific type is possible using the CAST introduced in SQL-92. For
example:

CAST (NULL AS INTEGER)

represents an integer which has the Null value.
The actual typing of Unknown (distinct or not from NULL itself) varies between SQL implementations. For example
the following

SELECT 'ok' WHERE (NULL <> 1) IS NULL;

parses and executes successfully in some environments (e.g. SQLite or PostgreSQL) which unify a NULL boolean
with Unknown but fails to parse in others (e.g. in SQL Server Compact). MySQL behaves similarly to PostgreSQL
in this regard (with the minor exception that MySQL regards TRUE and FALSE as no different from the ordinary
integers 1 and 0). PostgreSQL additionally implements a IS UNKNOWN predicate, which can be used to test
whether a three-value logical outcome is Unknown, although this is merely syntactic sugar.

BOOLEAN data type
The ISO SQL:1999 standard introduced the BOOLEAN data type to SQL, however it's still just an optional,
non-core feature, coded T031.
When restricted by a NOT NULL constraint, the SQL BOOLEAN works like the Boolean type from other
languages. Unrestricted however, the BOOLEAN datatype, despite its name, can hold the truth values TRUE,
FALSE, and UNKNOWN, all of which are defined as boolean literals according to the standard. The standard also
asserts that NULL and UNKNOWN "may be used interchangeably to mean exactly the same thing".[5]

http://en.wikipedia.org/w/index.php?title=Literal_%28computer_programming%29
http://en.wikipedia.org/w/index.php?title=Data_type
http://en.wikipedia.org/w/index.php?title=Function_overloading
http://en.wikipedia.org/w/index.php?title=SQL-92
http://en.wikipedia.org/w/index.php?title=SQLite
http://en.wikipedia.org/w/index.php?title=PostgreSQL
http://en.wikipedia.org/w/index.php?title=SQL_Server_Compact
http://en.wikipedia.org/w/index.php?title=MySQL
http://en.wikipedia.org/w/index.php?title=PostgreSQL
http://en.wikipedia.org/w/index.php?title=MySQL
http://en.wikipedia.org/w/index.php?title=SQL:1999
http://en.wikipedia.org/w/index.php?title=Boolean_type

Null (SQL) 93

The Boolean type has been subject of criticism, particularly because of the mandated behavior of the UNKNOWN
literal, which is never equal to itself because of the identification with NULL.
As discussed above, in the PostgreSQL implementation of SQL, the null value is used to represent all UNKNOWN
results, including the UNKNOWN BOOLEAN. PostgreSQL does not implement the UNKNOWN literal (although it
does implement the IS UNKNOWN operator, which is an orthogonal feature.) Most other major vendors do not
support the Boolean type (as defined in T031) as of 2012.[6] The procedural part of Oracle's PL/SQL supports
BOOLEAN however variables; these can also be assigned NULL and the value is considered the same as
UNKNOWN.

Controversy

Common mistakes
Misunderstanding of how Null works is the cause of a great number of errors in SQL code, both in ISO standard
SQL statements and in the specific SQL dialects supported by real-world database management systems. These
mistakes are usually the result of confusion between Null and either 0 (zero) or an empty string (a string value with a
length of zero, represented in SQL as ''). Null is defined by the ISO SQL standard as different from both an empty
string and the numerical value 0, however. While Null indicates the absence of any value, the empty string and
numerical zero both represent actual values.
A classic rookie error is attempting to use the equality operator to find NULL values. Most SQL implementations
will execute the following query as syntactically correct (therefore give no error message) but it never returns any
rows, regardless of whether NULL values do exist in the table.

SELECT *

FROM sometable

WHERE num = NULL; -- Should be "WHERE num IS NULL"

In a related, but more subtle example, a WHERE clause or conditional statement might compare a column's value
with a constant. It is often incorrectly assumed that a missing value would be "less than" or "not equal to" a constant
if that field contains Null, but, in fact, such expressions return Unknown. An example is below:

SELECT *

FROM sometable

WHERE num <> 1; -- Rows where num is NULL will not be returned,

 -- contrary to many users' expectations.

Similarly, Null values are often confused with empty strings. Consider the LENGTH function, which returns the
number of characters in a string. When a Null is passed into this function, the function returns Null. This can lead to
unexpected results, if users are not well versed in 3-value logic. An example is below:

SELECT *

FROM sometable

WHERE LENGTH(string) < 20; -- Rows where string is NULL will not be returned.

This is complicated by the fact that in some database interface programs (or even database implementations like
Oracle's), NULL is reported as an empty string, and empty strings may be incorrectly stored as NULL.

http://en.wikipedia.org/w/index.php?title=PostgreSQL
http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=PL/SQL

Null (SQL) 94

Criticisms
The ISO SQL implementation of Null is the subject of criticism, debate and calls for change. In The Relational
Model for Database Management: Version 2, Codd suggested that the SQL implementation of Null was flawed and
should be replaced by two distinct Null-type markers. The markers he proposed were to stand for "Missing but
Applicable" and "Missing but Inapplicable", known as A-values and I-values, respectively. Codd's recommendation,
if accepted, would have required the implementation of a four-valued logic in SQL. Others have suggested adding
additional Null-type markers to Codd's recommendation to indicate even more reasons that a data value might be
"Missing", increasing the complexity of SQL's logic system. At various times, proposals have also been put forth to
implement multiple user-defined Null markers in SQL. Because of the complexity of the Null-handling and logic
systems required to support multiple Null markers, none of these proposals have gained widespread acceptance.
Chris Date and Hugh Darwen, authors of The Third Manifesto, have suggested that the SQL Null implementation is
inherently flawed and should be eliminated altogether, pointing to inconsistencies and flaws in the implementation of
SQL Null-handling (particularly in aggregate functions) as proof that the entire concept of Null is flawed and should
be removed from the relational model. Others, like author Fabian Pascal, have stated a belief that "how the function
calculation should treat missing values is not governed by the relational model."[citation needed]

Closed world assumption
Another point of conflict concerning Nulls is that they violate the closed world assumption model of relational
databases by introducing an open world assumption into it. The closed world assumption, as it pertains to databases,
states that "Everything stated by the database, either explicitly or implicitly, is true; everything else is false." This
view assumes that the knowledge of the world stored within a database is complete. Nulls, however, operate under
the open world assumption, in which some items stored in the database are considered unknown, making the
database's stored knowledge of the world incomplete.

References
[1] Ron van der Meyden, " Logical approaches to incomplete information: a survey (http:/ / books. google. com/ books?id=gF0b85IuqQwC&

pg=PA344)" in Chomicki, Jan; Saake, Gunter (Eds.) Logics for Databases and Information Systems, Kluwer Academic Publishers ISBN
978-0-7923-8129-7, p. 344; PS preprint (http:/ / www. cse. unsw. edu. au/ ~meyden/ research/ indef-review. ps) (note: page numbering differs
in preprint from the published version)

[2] C.J. Date (2004), An introduction to database systems, 8th ed., Pearson Education, p. 594
[3] C. J. Date, Relational database writings, 1991-1994, Addison-Wesley, 1995, p. 371
[4] C.J. Date (2004), An introduction to database systems, 8th ed., Pearson Education, p. 584
[5][5] ISO/IEC 9075-2:2011 §4.5
[6] Troels Arvin, Survey of BOOLEAN data type implementation (http:/ / troels. arvin. dk/ db/ rdbms/ #data_types-boolean)

Further reading
• E. F. Codd. Understanding relations (installment #7). FDT Bulletin of ACM-SIGMOD, 7(3-4):23–28, 1975.
• Codd, E. F. (1979). "Extending the database relational model to capture more meaning". ACM Transactions on

Database Systems 4 (4): 397. doi: 10.1145/320107.320109 (http:/ / dx. doi. org/ 10. 1145/ 320107. 320109).
Especially §2.3.

• Date, C.J. (2000). The Database Relational Model: A Retrospective Review and Analysis: A Historical Account
and Assessment of E. F. Codd's Contribution to the Field of Database Technology. Addison Wesley Longman.
ISBN 0-201-61294-1.

• Klein, Hans-Joachim. " How to modify SQL queries in order to guarantee sure answers (http:/ / www. acm. org/
sigmod/ record/ issues/ 9409/ sql. ps)". ACM SIGMOD Record 23.3 (1994): 14-20.

• Claude Rubinson, Nulls, Three-Valued Logic, and Ambiguity in SQL: Critiquing Date’s Critique (http:/ / www. u.

arizona. edu/ ~rubinson/ scrawl/ Rubinson. 2007. Nulls_Three-Valued_Logic_and_Ambiguity_in_SQL. pdf),

http://en.wikipedia.org/w/index.php?title=Chris_Date
http://en.wikipedia.org/w/index.php?title=Hugh_Darwen
http://en.wikipedia.org/w/index.php?title=The_Third_Manifesto
http://en.wikipedia.org/w/index.php?title=Fabian_Pascal
http://en.wikipedia.org/wiki/Citation_needed
http://en.wikipedia.org/w/index.php?title=Closed_world_assumption
http://en.wikipedia.org/w/index.php?title=Open_world_assumption
http://books.google.com/books?id=gF0b85IuqQwC&pg=PA344
http://books.google.com/books?id=gF0b85IuqQwC&pg=PA344
http://www.cse.unsw.edu.au/~meyden/research/indef-review.ps
http://troels.arvin.dk/db/rdbms/#data_types-boolean
http://en.wikipedia.org/w/index.php?title=Digital_object_identifier
http://dx.doi.org/10.1145%2F320107.320109
http://en.wikipedia.org/w/index.php?title=C.J._Date
http://en.wikipedia.org/w/index.php?title=Pearson_PLC
http://en.wikipedia.org/w/index.php?title=International_Standard_Book_Number
http://en.wikipedia.org/w/index.php?title=Special:BookSources/0-201-61294-1
http://www.acm.org/sigmod/record/issues/9409/sql.ps
http://www.acm.org/sigmod/record/issues/9409/sql.ps
http://www.u.arizona.edu/~rubinson/scrawl/Rubinson.2007.Nulls_Three-Valued_Logic_and_Ambiguity_in_SQL.pdf
http://www.u.arizona.edu/~rubinson/scrawl/Rubinson.2007.Nulls_Three-Valued_Logic_and_Ambiguity_in_SQL.pdf

Null (SQL) 95

SIGMOD Record, December 2007 (Vol. 36, No. 4)
• John Grant, Null Values in SQL (http:/ / www09. sigmod. org/ sigmod/ record/ issues/ 0809/ p23. grant. pdf).

SIGMOD Record, September 2008 (Vol. 37, No. 3)
• Waraporn, Narongrit, and Kriengkrai Porkaew. " Null semantics for subqueries and atomic predicates (http:/ /

www. iaeng. org/ IJCS/ issues_v35/ issue_3/ IJCS_35_3_08. pdf)". IAENG International Journal of Computer
Science 35.3 (2008): 305-313.

• Bernhard Thalheim, Klaus-Dieter Schewe, "NULL ‘Value’ Algebras and Logics" in Anneli Heimbürger, Yasushi
Kiyoki, Takehiro Tokuda, Hannu Jaakkola, Naofumi Yoshida (eds.) Information Modelling and Knowledge
Bases XXII, Frontiers in Artificial Intelligence and Applications, Volume 225, 2011, IOS Press, ISBN
978-1-60750-689-8, pp. 354–367 doi: 10.3233/978-1-60750-690-4-354 (http:/ / dx. doi. org/ 10. 3233/
978-1-60750-690-4-354)

• Enrico Franconi and Sergio Tessaris, On the Logic of SQL Nulls (http:/ / ceur-ws. org/ Vol-866/ paper8. pdf),
Proceedings of the 6th Alberto Mendelzon International Workshop on Foundations of Data Management, Ouro
Preto, Brazil, June 27–30, 2012. pp. 114–128

External links
• Oracle NULLs (http:/ / www. psoug. org/ reference/ null. html)
• The Third Manifesto (http:/ / www. thethirdmanifesto. com/)
• Implications of NULLs in sequencing of data (http:/ / www. sqlexpert. co. uk/ 2006/ 05/

treatment-of-nulls-by-oracle-sql. html)
• Java bug report about jdbc not distinguishing null and empty string, which Sun closed as "not a bug" (http:/ /

bugs. sun. com/ bugdatabase/ view_bug. do?bug_id=4032732)
• TheIntegrationEngineer (http:/ / www. theintegrationengineer. com/ the-nature-of-null/) explains how NULL

works and the logic behind it.

http://www09.sigmod.org/sigmod/record/issues/0809/p23.grant.pdf
http://www.iaeng.org/IJCS/issues_v35/issue_3/IJCS_35_3_08.pdf
http://www.iaeng.org/IJCS/issues_v35/issue_3/IJCS_35_3_08.pdf
http://en.wikipedia.org/w/index.php?title=IAENG
http://en.wikipedia.org/w/index.php?title=Digital_object_identifier
http://dx.doi.org/10.3233%2F978-1-60750-690-4-354
http://dx.doi.org/10.3233%2F978-1-60750-690-4-354
http://ceur-ws.org/Vol-866/paper8.pdf
http://www.psoug.org/reference/null.html
http://www.thethirdmanifesto.com/
http://www.sqlexpert.co.uk/2006/05/treatment-of-nulls-by-oracle-sql.html
http://www.sqlexpert.co.uk/2006/05/treatment-of-nulls-by-oracle-sql.html
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4032732
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4032732
http://www.theintegrationengineer.com/the-nature-of-null/

Candidate key 96

Candidate key
In the relational model of databases, a candidate key of a relation is a minimal superkey for that relation; that is, a
set of attributes such that
1. the relation does not have two distinct tuples (i.e. rows or records in common database language) with the same

values for these attributes (which means that the set of attributes is a superkey)
2. there is no proper subset of these attributes for which (1) holds (which means that the set is minimal).
The constituent attributes are called prime attributes. Conversely, an attribute that does not occur in ANY candidate
key is called a non-prime attribute.
Since a relation contains no duplicate tuples, the set of all its attributes is a superkey if NULL values are not used. It
follows that every relation will have at least one candidate key.
The candidate keys of a relation tell us all the possible ways we can identify its tuples. As such they are an important
concept for the design of database schema.

Example
The definition of candidate keys can be illustrated with the following (abstract) example. Consider a relation variable
(relvar) R with attributes (A, B, C, D) that has only the following two legal values r1 and r2:

r1

A B C D

a1 b1 c1 d1

a1 b2 c2 d1

a2 b1 c2 d1

r2

A B C D

a1 b1 c1 d1

a1 b2 c2 d1

a1 b1 c2 d2

Here r2 differs from r1 only in the A and D values of the last tuple.
For r1 the following sets have the uniqueness property, i.e., there are no two distinct tuples in the instance with the
same values for the attributes in the set:

{A,B}, {A,C}, {B,C}, {A,B,C}, {A,B,D}, {A,C,D}, {B,C,D}, {A,B,C,D}
For r2 the uniqueness property holds for the following sets;

{B,C}, {B,D}, {C,D}, {A,B,C}, {A,B,D}, {A,C,D}, {B,C,D}, {A,B,C,D}
Since superkeys of a relvar are those sets of attributes that have the uniqueness property for all legal values of that
relvar and because we assume that r1 and r2 are all the legal values that R can take, we can determine the set of
superkeys of R by taking the intersection of the two lists:

{B,C}, {A,B,C}, {A,B,D}, {A,C,D}, {B,C,D}, {A,B,C,D}
Finally we need to select those sets for which there is no proper subset in the list, which are in this case:

http://en.wikipedia.org/w/index.php?title=Set_%28mathematics%29
http://en.wikipedia.org/w/index.php?title=Tuple
http://en.wikipedia.org/w/index.php?title=Proper_subset
http://en.wikipedia.org/w/index.php?title=Database_schema
http://en.wikipedia.org/w/index.php?title=Proper_subset

Candidate key 97

{B,C}, {A,B,D}, {A,C,D}
These are indeed the candidate keys of relvar R.
We have to consider all the relations that might be assigned to a relvar to determine whether a certain set of
attributes is a candidate key. For example, if we had considered only r1 then we would have concluded that {A,B} is
a candidate key, which is incorrect. However, we might be able to conclude from such a relation that a certain set is
not a candidate key, because that set does not have the uniqueness property (example {A,D} for r1). Note that the
existence of a proper subset of a set that has the uniqueness property cannot in general be used as evidence that the
superset is not a candidate key. In particular, note that in the case of an empty relation, every subset of the heading
has the uniqueness property, including the empty set.

Determining candidate keys
The set of all candidate keys can be computed e.g. from the set of functional dependencies. To this end we need to
define the attribute closure for an attribute set . The set contains all attributes that are functionally
implied by .
It is quite simple to find a single candidate key. We start with a set of attributes and try to remove successively
each attribute. If after removing an attribute the attribute closure stays the same, then this attribute is not necessary
and we can remove it permanently. We call the result . If is the set of all attributes, then

is a candidate key.
Actually we can detect every candidate key with this procedure by simply trying every possible order of removing
attributes. However there are much more permutations of attributes () than subsets (). That is, many
attribute orders will lead to the same candidate key.
There is a fundamental difficulty for efficient algorithms for candidate key computation: Certain sets of functional
dependencies lead to exponentially many candidate keys. Consider the functional dependencies

which yields candidate keys:
. That is, the best we can expect is an algorithm that is efficient with respect to the

number of candidate keys.
The following algorithm actually runs in polynomial time in the number of candidate keys and functional
dependencies:

 K[0] := minimize(A); /* A is the set of all attribute */

 n := 1; /* Number of Keys known so far */

 i := 0; /* Currently processed key */

 while i < n do

 foreach α → β ∈ F do
 S := α ∪ (K[i] − β);
 found := false;

 for j := 0 to n-1 do

 if K[j] ⊆ S then found := true;
 if not found then

 K[n] := minimize(S);

 n := n + 1;

The idea behind the algorithm is that given a candidate key and a functional dependency , the reverse
application of the functional dependency yields the set , which is a key, too. It may however be
covered by other already known candidate keys. (The algorithm checks this case using the 'found' variable.) If not,
then minimizing the new key yields a new candidate key. The key insight is (pun not intended) that all candidate
keys can be created this way.

http://en.wikipedia.org/w/index.php?title=Functional_dependency
http://en.wikipedia.org/w/index.php?title=Permutation
http://en.wikipedia.org/w/index.php?title=Power_set

Candidate key 98

References
• Date, Christopher (2003). "5: Integrity". An Introduction to Database Systems. Addison-Wesley. pp. 268–276.

ISBN 978-0-321-18956-1.

External links
• Relational Database Management Systems - Database Design - Terms of Reference - Keys (http:/ / rdbms.

opengrass. net/ 2_Database Design/ 2. 1_TermsOfReference/ 2. 1. 2_Keys. html): An overview of the different
types of keys in an RDBMS (Relational Database Management System).

Foreign key
In the context of relational databases, a foreign key is a field (or collection of fields) in one table that uniquely
identifies a row of another table. In other words, a foreign key is a column or a combination of columns that is used
to establish and enforce a link between the data in two tables.
For example, consider a database with two tables, a CUSTOMER table that includes all customer data and an
ORDER table that includes all customer orders. Suppose that the business requires that each order must refer to a
single customer. To reflect this in the database, the primary key (e.g., CUSTOMERID) in the CUSTOMER table is
added to the ORDER table, where it is called a foreign key. Since CUSTOMERID in the ORDER table uniquely
identifies a row of the CUSTOMER table, it says which customer placed the order.
The table containing the foreign key is called the referencing or child table and the table containing the candidate key
is called the referenced or parent table. Since the purpose of the foreign key in the referencing table is to identify a
row of the referenced table, the value of the foreign key must be equal to the candidate key's value in some row of
the primary table or else have no value, i.e., the NULL value. This rule is called a referential integrity constraint
between the two tables. Because violations of referential integrity constraints can be the source of many database
problems, most database management systems enforce referential integrity constraints, providing mechanisms to
ensure that every non-null foreign key corresponds to a row of the referenced (or parent) table.
Foreign keys play an essential role in database design. One important part of database design is making sure that
relationships between real-world entities are reflected in the database by references, using foreign keys to refer from
one table to another. Another important part of database design is database normalization, in which tables are broken
apart and foreign keys make it possible for them to be reconstructed.
Multiple rows in the referencing (or child) table may refer to the same row in the referenced (or parent) table. For
this reason, the relationship between the two tables is called a one to many relationship between the referenced table
and the referencing table. The child and parent table may be the same table, i.e. the foreign key refers back to the
same table. Such a foreign key is known in SQL:2003 as a self-referencing or recursive foreign key.
A table may have multiple foreign keys, and each foreign key can have a different parent table. Each foreign key is
enforced independently by the database system. Therefore, cascading relationships between tables can be established
using foreign keys.

http://en.wikipedia.org/w/index.php?title=Christopher_J._Date
http://en.wikipedia.org/w/index.php?title=International_Standard_Book_Number
http://en.wikipedia.org/w/index.php?title=Special:BookSources/978-0-321-18956-1
http://rdbms.opengrass.net/2_Database%20Design/2.1_TermsOfReference/2.1.2_Keys.html
http://rdbms.opengrass.net/2_Database%20Design/2.1_TermsOfReference/2.1.2_Keys.html
http://en.wikipedia.org/w/index.php?title=Field_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Database_management_systems
http://en.wikipedia.org/w/index.php?title=Database_design
http://en.wikipedia.org/w/index.php?title=SQL:2003
http://en.wikipedia.org/w/index.php?title=Database_system

Foreign key 99

Defining foreign keys
Foreign keys are defined in the ISO SQL Standard, through a FOREIGN KEY constraint. The syntax to add such a
constraint to an existing table is defined in SQL:2003 as shown below. Omitting the column list in the
REFERENCES clause implies that the foreign key shall reference the primary key of the referenced table.

ALTER TABLE <table identifier>

 ADD [CONSTRAINT <constraint identifier>]

 FOREIGN KEY (<column expression> {, <column expression>}...)

 REFERENCES <table identifier> [(<column expression> {, <column expression>}...)]

 [ON UPDATE <referential action>]

 [ON DELETE <referential action>]

Likewise, foreign keys can be defined as part of the CREATE TABLE SQL statement.

CREATE TABLE table_name (

 id INTEGER PRIMARY KEY,

 col2 CHARACTER VARYING(20),

 col3 INTEGER,

 ...

 FOREIGN KEY(col3)

 REFERENCES other_table(key_col) ON DELETE CASCADE,

 ...)

If the foreign key is a single column only, the column can be marked as such using the following syntax:

CREATE TABLE table_name (

 id INTEGER PRIMARY KEY,

 col2 CHARACTER VARYING(20),

 col3 INTEGER REFERENCES other_table(column_name),

 ...)

Foreign keys can be defined with a stored procedure statement.Wikipedia:Please clarify

sp_foreignkey tabname, pktabname, col1 [, col2] ... [, col8]

• tabname: the name of the table or view that contains the foreign key to be defined.
• pktabname: the name of the table or view that has the primary key to which the foreign key applies. The primary

key must already be defined.
• col1: the name of the first column that makes up the foreign key. The foreign key must have at least one column

and can have a maximum of eight columns.

http://en.wikipedia.org/w/index.php?title=Integrity_constraints
http://en.wikipedia.org/w/index.php?title=SQL:2003
http://en.wikipedia.org/wiki/Please_clarify

Foreign key 100

Referential actions
Because the database management system enforces referential constraints, it must ensure data integrity if rows in a
referenced table are to be deleted (or updated). If dependent rows in referencing tables still exist, those references
have to be considered. SQL:2003 specifies 5 different referential actions that shall take place in such occurrences:
•• CASCADE
•• RESTRICT
•• NO ACTION
•• SET NULL
•• SET DEFAULT

CASCADE
Whenever rows in the master (referenced) table are deleted (resp. updated), the respective rows of the child
(referencing) table with a matching foreign key column will get deleted (resp. updated) as well. This is called a
cascade delete (resp. update).

RESTRICT
A value cannot be updated or deleted when a row exists in a referencing or child table that references the value in the
referenced table.
Similarly, a row cannot be deleted as long as there is a reference to it from a referencing or child table.

NO ACTION
NO ACTION and RESTRICT are very much alike. The main difference between NO ACTION and RESTRICT is
that with NO ACTION the referential integrity check is done after trying to alter the table. RESTRICT does the
check before trying to execute the UPDATE or DELETE statement. Both referential actions act the same if the
referential integrity check fails: the UPDATE or DELETE statement will result in an error.
In other words, when an UPDATE or DELETE statement is executed on the referenced table using the referential
action NO ACTION, the DBMS verifies at the end of the statement execution that none of the referential
relationships are violated. This is different from RESTRICT, which assumes at the outset that the operation will
violate the constraint. Using NO ACTION, the triggers or the semantics of the statement itself may yield an end state
in which no foreign key relationships are violated by the time the constraint is finally checked, thus allowing the
statement to complete successfully.

SET DEFAULT , SET NULL
In general, the action taken by the DBMS for SET NULL or SET DEFAULT is the same for both ON DELETE or
ON UPDATE: The value of the affected referencing attributes is changed to NULL for SET NULL, and to the
specified default value for SET DEFAULT.

Triggers
Referential actions are generally implemented as implied triggers (i.e. triggers with system-generated names, often
hidden.) As such, they are subject to the same limitations as user-defined triggers, and their order of execution
relative to other triggers may need to be considered; in some cases it may become necessary to replace the referential
action with its equivalent user-defined trigger to ensure proper execution order, or to work around mutating-table
limitations.
Another important limitation appears with transaction isolation: your changes to a row may not be able to fully
cascade because the row is referenced by data your transaction cannot "see", and therefore cannot cascade onto. An

http://en.wikipedia.org/w/index.php?title=Database_management_system
http://en.wikipedia.org/w/index.php?title=SQL:2003
http://en.wikipedia.org/w/index.php?title=Update_%28SQL%29
http://en.wikipedia.org/w/index.php?title=Delete_%28SQL%29
http://en.wikipedia.org/w/index.php?title=DBMS
http://en.wikipedia.org/w/index.php?title=Database_trigger%23Mutating_tables
http://en.wikipedia.org/w/index.php?title=Isolation_%28database_systems%29

Foreign key 101

example: while your transaction is attempting to renumber a customer account, a simultaneous transaction is
attempting to create a new invoice for that same customer; while a CASCADE rule may fix all the invoice rows your
transaction can see to keep them consistent with the renumbered customer row, it won't reach into another
transaction to fix the data there; because the database cannot guarantee consistent data when the two transactions
commit, one of them will be forced to roll back (often on a first-come-first-served basis.)

Example
As a first example to illustrate foreign keys, suppose an accounts database has a table with invoices and each invoice
is associated with a particular supplier. Supplier details (such as name and address) are kept in a separate table; each
supplier is given a 'supplier number' to identify it. Each invoice record has an attribute containing the supplier
number for that invoice. Then, the 'supplier number' is the primary key in the Supplier table. The foreign key in the
Invoices table points to that primary key. The relational schema is the following. Primary keys are marked in bold,
and foreign keys are marked in italics.

 Supplier (SupplierNumber, Name, Address, Type)

 Invoices (InvoiceNumber, SupplierNumber, Text)

The corresponding Data Definition Language statement is as follows.

 CREATE TABLE Supplier (

 SupplierNumber INTEGER NOT NULL,

 Name VARCHAR(20) NOT NULL,

 Address VARCHAR(50) NOT NULL,

 Type VARCHAR(10),

 CONSTRAINT supplier_pk PRIMARY KEY(SupplierNumber),

 CONSTRAINT number_value CHECK (SupplierNumber > 0))

 CREATE TABLE Invoices (

 InvoiceNumber INTEGER NOT NULL,

 SupplierNumber INTEGER NOT NULL,

 Text VARCHAR(4096),

 CONSTRAINT invoice_pk PRIMARY KEY(InvoiceNumber),

 CONSTRAINT inumber_value CHECK (InvoiceNumber > 0),

 CONSTRAINT supplier_fk FOREIGN KEY(SupplierNumber)

 REFERENCES Supplier(SupplierNumber)

 ON UPDATE CASCADE ON DELETE RESTRICT)

References

External links
• SQL-99 Foreign Keys (https:/ / kb. askmonty. org/ en/ constraint_type-foreign-key-constraint/)
• PostgreSQL Foreign Keys (http:/ / www. postgresql. org/ docs/ 9. 2/ static/ tutorial-fk. html)
• MySQL Foreign Keys (http:/ / dev. mysql. com/ doc/ refman/ 5. 1/ en/ create-table-foreign-keys. html)
• FirebirdSQL Foreign Keys (http:/ / www. firebirdsql. org/ manual/ nullguide-keys. html#nullguide-keys-fk)
• SQLite support for Foreign Keys (http:/ / www. sqlite. org/ foreignkeys. html)

http://en.wikipedia.org/w/index.php?title=Data_Definition_Language
https://kb.askmonty.org/en/constraint_type-foreign-key-constraint/
http://www.postgresql.org/docs/9.2/static/tutorial-fk.html
http://dev.mysql.com/doc/refman/5.1/en/create-table-foreign-keys.html
http://www.firebirdsql.org/manual/nullguide-keys.html#nullguide-keys-fk
http://www.sqlite.org/foreignkeys.html

Unique key 102

Unique key
In an entity relationship diagram of a data model, one or more unique keys may be declared for each data entity.
Each unique key is composed from one or more data attributes of that data entity. The set of unique keys declared for
a data entity is often referred to as the candidate keys for that data entity. From the set of candidate keys, a single
unique key is selected and declared the primary key for that data entity. In an entity relationship diagram, each entity
relationship uses a unique key, most often the primary key, of one data entity and copies the unique key data
attributes to another data entity to which it relates. This inheritance of the unique key data attributes is referred to as
a foreign key and is used to provide data access paths between data entities. Once the data model is instantiated into
a database, each data entity usually becomes a database table, unique keys become unique indexes associated with
their assigned database tables, and entity relationships become foreign key constraints. In integrated data models,[1]

commonality relationships[2] do not become foreign key constraints since commonality relationships are a
peer-to-peer type of relationship.
In a relational database, a "Primary Key" is a key that uniquely defines the characteristics of each row (also known
as record or tuple). The primary key has to consist of characteristics that cannot be duplicated by any other row.
The primary key may consist of a single attribute or a multiple attributes in combination. For example, a birthday
could be shared by many people and so would not be a prime candidate for the Primary Key, but a social security
number or Driver's License number would be ideal since it correlates to one single data value. Another unique
characteristic of a Primary Key as it pertains to a relational database, is that a Primary Key must also serve as a
Foreign Key on a related table[citation needed]. For example:

Author Table Schema:

AuthorTable(AUTHOR_ID,AuthorName,CountryBorn,YearBorn)

Book Table Schema:

Book Table(ISBN,Author_ID,Title,Publisher,Price)

Here we can see that AUTHOR_ID serves as the Primary Key in AuthorTable but also serves as the Foreign Key on
the BookTable. The Foreign Key serves as the link and therefore the connection between the two "related" tables in
this sample database.
In a relational database, a unique key index can uniquely identify each row of data values in a database table. A
unique key index comprises a single column or a set of columns in a single database table. No two distinct rows or
data records in a database table can have the same data value (or combination of data values) in those unique key
index columns if NULL values are not used. Depending on its design, a database table may have many unique key
indexes but at most one primary key index.
A unique key constraint does not imply the NOT NULL constraint in practice. Because NULL is not an actual value
(it represents the lack of a value), when two rows are compared, and both rows have NULL in a column, the column
values are not considered to be equal. Thus, in order for a unique key to uniquely identify each row in a table, NULL
values must not be used. According to the SQL[3] standard and Relational Model theory, a unique key (unique
constraint) should accept NULL in several rows/tuples — however not all RDBMS implement this feature
correctly.[4][5]

A unique key should uniquely identify all possible rows that exist in a table and not only the currently existing rows
[citation needed]. Examples of unique keys are Social Security numbers (associated with a specific person[6]) or ISBNs
(associated with a specific book). Telephone books and dictionaries cannot use names, words, or Dewey Decimal
system numbers as candidate keys because they do not uniquely identify telephone numbers or words.

http://en.wikipedia.org/w/index.php?title=Entity_relationship_diagram
http://en.wikipedia.org/w/index.php?title=Data_model
http://en.wikipedia.org/w/index.php?title=Database_table
http://en.wikipedia.org/w/index.php?title=Row
http://en.wikipedia.org/w/index.php?title=Record
http://en.wikipedia.org/w/index.php?title=Tuple
http://en.wikipedia.org/w/index.php?title=Foreign_Key
http://en.wikipedia.org/wiki/Citation_needed
http://en.wikipedia.org/w/index.php?title=Primary_Key
http://en.wikipedia.org/w/index.php?title=Foreign_Key
http://en.wikipedia.org/wiki/Citation_needed
http://en.wikipedia.org/w/index.php?title=Social_Security_number
http://en.wikipedia.org/w/index.php?title=International_Standard_Book_Number
http://en.wikipedia.org/w/index.php?title=Telephone_directory
http://en.wikipedia.org/w/index.php?title=Dictionary
http://en.wikipedia.org/w/index.php?title=Dewey_Decimal

Unique key 103

A table can have at most one primary key, but more than one unique key. A primary key is a combination of
columns which uniquely specify a row. It is a special case of unique keys. One difference is that primary keys have
an implicit NOT NULL constraint while unique keys do not. Thus, the values in unique key columns may or may
not be NULL, and in fact such a column may contain at most one NULL fields.[7] Another difference is that primary
keys must be defined using another syntax.
The relational model, as expressed through relational calculus and relational algebra, does not distinguish between
primary keys and other kinds of keys. Primary keys were added to the SQL standard mainly as a convenience to the
application programmer.[citation needed]

Unique keys as well as primary keys can be referenced by foreign keys.

Defining primary keys
Primary keys are defined in the ANSI SQL Standard, through the PRIMARY KEY constraint. The syntax to add
such a constraint to an existing table is defined in SQL:2003 like this:

 ALTER TABLE <table identifier>

 ADD [CONSTRAINT <constraint identifier>]

 PRIMARY KEY (<column expression> {, <column expression>}...)

The primary key can also be specified directly during table creation. In the SQL Standard, primary keys may consist
of one or multiple columns. Each column participating in the primary key is implicitly defined as NOT NULL. Note
that some DBMS require explicitly marking primary-key columns as NOT NULL.[citation needed]

 CREATE TABLE table_name (

 ...

)

If the primary key consists only of a single column, the column can be marked as such using the following syntax:

 CREATE TABLE table_name (

 id_col INT PRIMARY KEY,

 col2 CHARACTER VARYING(20),

 ...

)

Differences between Primary Key and Unique Key:

Primary Key
1. A primary key cannot allow null values. (You cannot define a primary key on columns that allow nulls.)
2. Each table can have at most one primary key.
3. On some RDBMS a primary key automatically generates a clustered table index by default.
Unique Key
1. A unique key can allow null values. (You can define a unique key on columns that allow nulls.)
2. Each table can have multiple unique keys.
3. On some RDBMS a unique key automatically generates a non-clustered table index by default.

http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/wiki/Citation_needed
http://en.wikipedia.org/w/index.php?title=SQL%23Standardization
http://en.wikipedia.org/w/index.php?title=SQL:2003
http://en.wikipedia.org/wiki/Citation_needed
http://en.wikipedia.org/w/index.php?title=RDBMS
http://en.wikipedia.org/w/index.php?title=RDBMS

Unique key 104

Defining unique keys
The definition of unique keys is syntactically very similar to primary keys.

 ALTER TABLE <table identifier>

 ADD [CONSTRAINT <constraint identifier>]

 UNIQUE (<column expression> {, <column expression>}...)

Likewise, unique keys can be defined as part of the CREATE TABLE SQL statement.

 CREATE TABLE table_name (

 id_col INT,

 col2 CHARACTER VARYING(20),

 key_col SMALLINT,

 ...

 CONSTRAINT key_unique UNIQUE(key_col),

 ...

)

 CREATE TABLE table_name (

 id_col INT PRIMARY KEY,

 col2 CHARACTER VARYING(20),

 ...

 key_col SMALLINT UNIQUE,

 ...

)

Surrogate keys
In some design situations the natural key that uniquely identifies a tuple in a relation is difficult to use for software
development. For example, it may involve multiple columns or large text fields. A surrogate key can be used as the
primary key. In other situations there may be more than one candidate key for a relation, and no candidate key is
obviously preferred. A surrogate key may be used as the primary key to avoid giving one candidate key artificial
primacy over the others.
Since primary keys exist primarily as a convenience to the programmer, surrogate primary keys are often used—in
many cases exclusively—in database application design.
Due to the popularity of surrogate primary keys, many developers and in some cases even theoreticians have come to
regard surrogate primary keys as an inalienable part of the relational data model. This is largely due to a migration of
principles from the Object-Oriented Programming model to the relational model, creating the hybrid
object-relational model. In the ORM, these additional restrictions are placed on primary keys:
•• Primary keys should be immutable, that is, not changed until the record is destroyed.
•• Primary keys should be anonymous integer or numeric identifiers.
However, neither of these restrictions is part of the relational model or any SQL standard. Due diligence should be
applied when deciding on the immutability of primary key values during database and application design. Some
database systems even imply that values in primary key columns cannot be changed using the UPDATE SQL
statement[citation needed].

http://en.wikipedia.org/w/index.php?title=Due_diligence
http://en.wikipedia.org/wiki/Citation_needed

Unique key 105

Alternate key
It is commonplace in SQL databases to declare a single primary key, the most important unique key. However,
there could be further unique keys that could serve the same purpose. These should be marked as 'unique' keys. This
is done to prevent incorrect data from entering a table (a duplicate entry is not valid in a unique column) and to make
the database more complete and useful. These could be called alternate keys.[8]

References
[1] Data Model Integration | The Integration of Data Models (http:/ / www. strins. com/ data-model-integration. html)
[2] Commonality Relationships | Commonality Constraints (http:/ / www. strins. com/ commonality-relationships. html)
[3] Summary of ANSI/ISO/IEC SQL (http:/ / www. xcdsql. org/ Summary of SQL. html#chapter-Table constraints)
[4] Constraints - SQL Database Reference Material - Learn sql, read an sql manual, follow an sql tutorial, or learn how to structure an SQL query

(http:/ / www. sql. org/ sql-database/ postgresql/ manual/ ddl-constraints. html#AEN1832)
[5] Comparison of different SQL implementations (http:/ / troels. arvin. dk/ db/ rdbms/ #constraints-unique)
[6] SSN uniqueness: Rare SSN duplicates do exist in the field, a condition that led to problems with early commercial computer systems that

relied on SSN uniqueness. Practitioners are taught that well-known duplications in SSN assignments occurred in the early days of the SSN
system. This situation points out the complexity of designing systems that assume unique keys in real-world data.

[7] MySQL 5.5 Reference Manual :: 12.1.14. CREATE TABLE Syntax (http:/ / dev. mysql. com/ doc/ refman/ 5. 5/ en/ create-table. html) "For
all engines, a UNIQUE index permits multiple NULL values for columns that can contain NULL."

[8] Alternate key - Oracle FAQ (http:/ / www. orafaq. com/ wiki/ Alternate_key)

External links
• Relation Database terms of reference, Keys (http:/ / rdbms. opengrass. net/ 2_Database Design/ 2.

1_TermsOfReference/ 2. 1. 2_Keys. html): An overview of the different types of keys in an RDBMS

Superkey
A superkey is defined in the relational model of database organization as a set of attributes of a relation variable for
which it holds that in all relations assigned to that variable, there are no two distinct tuples (rows) that have the same
values for the attributes in this set. Equivalently a superkey can also be defined as a set of attributes of a relation
schema upon which all attributes of the schema are functionally dependent.
Note that the set of all attributes is a trivial superkey, because in relational algebra duplicate rows are not permitted.
Also note that if attribute set K is a superkey of relation R, then at all times it is the case that the projection of R over
K has the same cardinality as R itself.
Informally, a superkey is a set of attributes within a table whose values can be used to uniquely identify a tuple. A
candidate key is a minimal set of attributes necessary to identify a tuple, this is also called a minimal superkey. For
example, given an employee schema, consisting of the attributes employeeID, name, job, and departmentID, we
could use the employeeID in combination with any or all other attributes of this table to uniquely identify a tuple in
the table. Examples of superkeys in this schema would be {employeeID, Name}, {employeeID, Name, job}, and
{employeeID, Name, job, departmentID}. The last example is known as trivial superkey, because it uses all
attributes of this table to identify the tuple.
In a real database we do not need values for all of those attributes to identify a tuple. We only need, per our example,
the set {employeeID}. This is a minimal superkey – that is, a minimal set of attributes that can be used to identify a
single tuple. So, employeeID is a candidate key.

http://www.strins.com/data-model-integration.html
http://www.strins.com/commonality-relationships.html
http://www.xcdsql.org/Summary%20of%20SQL.html#chapter-Table%20constraints
http://www.sql.org/sql-database/postgresql/manual/ddl-constraints.html#AEN1832
http://troels.arvin.dk/db/rdbms/#constraints-unique
http://dev.mysql.com/doc/refman/5.5/en/create-table.html
http://www.orafaq.com/wiki/Alternate_key
http://rdbms.opengrass.net/2_Database%20Design/2.1_TermsOfReference/2.1.2_Keys.html
http://rdbms.opengrass.net/2_Database%20Design/2.1_TermsOfReference/2.1.2_Keys.html
http://en.wikipedia.org/w/index.php?title=Set_%28mathematics%29
http://en.wikipedia.org/w/index.php?title=Tuple
http://en.wikipedia.org/w/index.php?title=Relation_schema
http://en.wikipedia.org/w/index.php?title=Relation_schema
http://en.wikipedia.org/w/index.php?title=Functional_dependency
http://en.wikipedia.org/w/index.php?title=Projection_%28relational_algebra%29
http://en.wikipedia.org/w/index.php?title=Cardinality_%28data_modeling%29

Superkey 106

Example

English Monarchs

Monarch Name Monarch Number Royal House

Edward II Plantagenet

Edward III Plantagenet

Richard III Plantagenet

Henry IV Lancaster

First, list out all the (non-empty) sets of attributes:
• {Monarch Name}
• {Monarch Number}
• {Royal House}
• {Monarch Name, Monarch Number}
• {Monarch Name, Royal House}
• {Monarch Number, Royal House}
• {Monarch Name, Monarch Number, Royal House}

Second, eliminate all the sets which do not meet superkey's requirement. For example, {Monarch Name, Royal
House} cannot be a superkey because for the same attribute values (Edward, Plantagenet), there are two distinct
tuples:
• (Edward, II, Plantagenet)
• (Edward, III, Plantagenet)
Finally, after elimination, the remaining sets of attributes are the only possible superkeys in this example:
• {Monarch Name, Monarch Number} (Candidate Key)
•• {Monarch Name, Monarch Number, Royal House}
In real situations, however, superkeys are normally not determined by this method, which is very tedious and
time-consuming, but by analyzing functional dependencies (FD).

References
• Silberschatz, Abraham (2011). Database System Concepts (6th ed.). McGraw-Hill. pp. 45–46.

ISBN 978-0-07-352332-3.

External links
• Relation Database terms of reference, Keys (http:/ / rdbms. opengrass. net/ 2_Database Design/ 2.

1_TermsOfReference/ 2. 1. 2_Keys. html): An overview of the different types of keys in an RDBMS

http://en.wikipedia.org/w/index.php?title=International_Standard_Book_Number
http://en.wikipedia.org/w/index.php?title=Special:BookSources/978-0-07-352332-3
http://rdbms.opengrass.net/2_Database%20Design/2.1_TermsOfReference/2.1.2_Keys.html
http://rdbms.opengrass.net/2_Database%20Design/2.1_TermsOfReference/2.1.2_Keys.html

Surrogate key 107

Surrogate key
A surrogate key in a database is a unique identifier for either an entity in the modeled world or an object in the
database. The surrogate key is not derived from application data.

Definition
There are at least two definitions of a surrogate:
Surrogate (1) – Hall, Owlett and Codd (1976)

A surrogate represents an entity in the outside world. The surrogate is internally generated by the system but is
nevertheless visible to the user or application.

Surrogate (2) – Wieringa and De Jonge (1991)
A surrogate represents an object in the database itself. The surrogate is internally generated by the system and
is invisible to the user or application.

The Surrogate (1) definition relates to a data model rather than a storage model and is used throughout this article.
See Date (1998).
An important distinction between a surrogate and a primary key depends on whether the database is a current
database or a temporal database. Since a current database stores only currently valid data, there is a one-to-one
correspondence between a surrogate in the modeled world and the primary key of the database. In this case the
surrogate may be used as a primary key, resulting in the term surrogate key. In a temporal database, however, there
is a many-to-one relationship between primary keys and the surrogate. Since there may be several objects in the
database corresponding to a single surrogate, we cannot use the surrogate as a primary key; another attribute is
required, in addition to the surrogate, to uniquely identify each object.
Although Hall et al. (1976) say nothing about this, othersWikipedia:Citing sources have argued that a surrogate
should have the following characteristics:
•• the value is unique system-wide, hence never reused
•• the value is system generated
•• the value is not manipulable by the user or application
•• the value contains no semantic meaning
•• the value is not visible to the user or application
•• the value is not composed of several values from different domains.

Surrogates in practice
In a current database, the surrogate key can be the primary key, generated by the database management system and
not derived from any application data in the database. The only significance of the surrogate key is to act as the
primary key. It is also possible that the surrogate key exists in addition to the database-generated UUID (for
example, an HR number for each employee other than the UUID of each employee).
A surrogate key is frequently a sequential number (e.g. a Sybase or SQL Server "identity column", a PostgreSQL or
Informix serial, an Oracle SEQUENCE or a column defined with AUTO_INCREMENT in MySQL) but doesn't
have to be. Having the key independent of all other columns insulates the database relationships from changes in
data values or database design (making the database more agile) and guarantees uniqueness.
In a temporal database, it is necessary to distinguish between the surrogate key and the primary key. Typically, every
row would have both a primary key and a surrogate key. The primary key identifies the unique row in the database,
the surrogate key identifies the unique entity in the modelled world; these two keys are not the same. For example,
table Staff may contain two rows for "John Smith", one row when he was employed between 1990 and 1999, another

http://en.wikipedia.org/w/index.php?title=Data_model
http://en.wikipedia.org/w/index.php?title=Storage_model
http://en.wikipedia.org/w/index.php?title=Current_database
http://en.wikipedia.org/w/index.php?title=Current_database
http://en.wikipedia.org/w/index.php?title=Temporal_database
http://en.wikipedia.org/wiki/Citing_sources
http://en.wikipedia.org/w/index.php?title=Current_database
http://en.wikipedia.org/w/index.php?title=Primary_key
http://en.wikipedia.org/w/index.php?title=Database_management_system
http://en.wikipedia.org/w/index.php?title=Universally_unique_identifier
http://en.wikipedia.org/w/index.php?title=Adaptive_Server_Enterprise
http://en.wikipedia.org/w/index.php?title=Microsoft_SQL_Server
http://en.wikipedia.org/w/index.php?title=PostgreSQL
http://en.wikipedia.org/w/index.php?title=Informix
http://en.wikipedia.org/w/index.php?title=Oracle_Corporation
http://en.wikipedia.org/w/index.php?title=MySQL
http://en.wikipedia.org/w/index.php?title=Agile_software_development
http://en.wikipedia.org/w/index.php?title=Temporal_database
http://en.wikipedia.org/w/index.php?title=Primary_key

Surrogate key 108

row when he was employed between 2001 and 2006. The surrogate key is identical (non-unique) in both rows
however the primary key will be unique.
Some database designers use surrogate keys systematically regardless of the suitability of other candidate keys,
while others will use a key already present in the data, if there is one.
A surrogate key may also be called a synthetic key, an entity identifier, a system-generated key, a database sequence
number, a factless key, a technical key, or an arbitrary unique identifier.[citation needed] Some of these terms describe
the way of generating new surrogate values rather than the nature of the surrogate concept.
Approaches to generating surrogates include:
• Universally Unique Identifiers (UUIDs)
• Globally Unique Identifiers (GUIDs)
• Object Identifiers (OIDs)
• Sybase or SQL Server identity column IDENTITY OR IDENTITY(n,n)
• Oracle SEQUENCE
• PostgreSQL or IBM Informix serial
• MySQL AUTO_INCREMENT
• AutoNumber data type in Microsoft Access
• AS IDENTITY GENERATED BY DEFAULT in IBM DB2
• Identity column (implemented in DDL) in Teradata

Advantages

Immutability
Surrogate keys do not change while the row exists. This has the following advantages:
•• Applications cannot lose their reference to a row in the database (since the identifier never changes).
• The primary key data can always be modified, even with databases that do not support cascading updates across

related foreign keys.

Requirement changes
Attributes that uniquely identify an entity might change, which might invalidate the suitability of the natural,
compound keys. Consider the following example:

An employee's network user name is chosen as a natural key. Upon merging with another company, new
employees must be inserted. Some of the new network user names create conflicts because their user names
were generated independently (when the companies were separate).

In these cases, generally a new attribute must be added to the natural key (for example, an original_company
column). With a surrogate key, only the table that defines the surrogate key must be changed. With natural keys, all
tables (and possibly other, related software) that use the natural key will have to change.
Some problem domains do not clearly identify a suitable natural key. Surrogate key avoids choosing a natural key
that might be incorrect.

http://en.wikipedia.org/wiki/Citation_needed
http://en.wikipedia.org/w/index.php?title=Universally_Unique_Identifier
http://en.wikipedia.org/w/index.php?title=Globally_Unique_Identifier
http://en.wikipedia.org/w/index.php?title=Object_identifier
http://en.wikipedia.org/w/index.php?title=Adaptive_Server_Enterprise
http://en.wikipedia.org/w/index.php?title=Microsoft_SQL_Server
http://en.wikipedia.org/w/index.php?title=Oracle_Corporation
http://en.wikipedia.org/w/index.php?title=PostgreSQL
http://en.wikipedia.org/w/index.php?title=IBM_Informix
http://en.wikipedia.org/w/index.php?title=MySQL
http://en.wikipedia.org/w/index.php?title=Microsoft_Access
http://en.wikipedia.org/w/index.php?title=IBM_DB2
http://en.wikipedia.org/w/index.php?title=Data_definition_language
http://en.wikipedia.org/w/index.php?title=Teradata

Surrogate key 109

Performance
Surrogate keys tend to be a compact data type, such as a four-byte integer. This allows the database to query the
single key column faster than it could multiple columns. Furthermore a non-redundant distribution of keys causes the
resulting b-tree index to be completely balanced. Surrogate keys are also less expensive to join (fewer columns to
compare) than compound keys.

Compatibility
While using several database application development systems, drivers, and object-relational mapping systems, such
as Ruby on Rails or Hibernate, it is much easier to use an integer or GUID surrogate keys for every table instead of
natural keys in order to support database-system-agnostic operations and object-to-row mapping.

Uniformity
When every table has a uniform surrogate key, some tasks can be easily automated by writing the code in a
table-independent way.

Validation
It is possible to design key-values that follow a well-known pattern or structure which can be automatically verified.
For instance, the keys that are intended to be used in some column of some table might be designed to "look
differently from" those that are intended to be used in another column or table, thereby simplifying the detection of
application errors in which the keys have been misplaced. However, this characteristic of the surrogate keys should
never be used to drive any of the logic of the applications themselves, as this would violate the principles of
Database normalization.

Disadvantages

Disassociation
The values of generated surrogate keys have no relationship to the real-world meaning of the data held in a row.
When inspecting a row holding a foreign key reference to another table using a surrogate key, the meaning of the
surrogate key's row cannot be discerned from the key itself. Every foreign key must be joined to see the related data
item. This can also make auditing more difficult,[citation needed] as incorrect data is not obvious.
Surrogate keys are unnatural for data that is exported and shared. A particular difficulty is that tables from two
otherwise identical schemas (for example, a test schema and a development schema) can hold records that are
equivalent in a business sense, but have different keys. This can be mitigated by not exporting surrogate keys, except
as transient data (most obviously, in executing applications that have a "live" connection to the database).

Query optimization
Relational databases assume a unique index is applied to a table's primary key. The unique index serves two
purposes: (i) to enforce entity integrity, since primary key data must be unique across rows and (ii) to quickly search
for rows when queried. Since surrogate keys replace a table's identifying attributes—the natural key—and since the
identifying attributes are likely to be those queried, then the query optimizer is forced to perform a full table scan
when fulfilling likely queries. The remedy to the full table scan is to apply indexes on the identifying attributes, or
sets of them. Where such sets are themselves a candidate key, the index can be a unique index.
These additional indexes, however, will take up disk space and slow down inserts and deletes.

http://en.wikipedia.org/w/index.php?title=B-tree
http://en.wikipedia.org/w/index.php?title=Compound_key
http://en.wikipedia.org/w/index.php?title=Object-relational_mapping
http://en.wikipedia.org/w/index.php?title=Ruby_on_Rails
http://en.wikipedia.org/w/index.php?title=Hibernate_%28Java%29
http://en.wikipedia.org/wiki/Citation_needed
http://en.wikipedia.org/w/index.php?title=Index_%28database%29
http://en.wikipedia.org/w/index.php?title=Natural_key

Surrogate key 110

Normalization
The presence of a surrogate key can result in the database administrator forgetting to establish, or accidentally
removing, a secondary unique index on the natural key of the table. Without a unique index on the natural key,
duplicate rows can appear and once present can be difficult to identify.

Business process modeling
Because surrogate keys are unnatural, flaws can appear when modeling the business requirements. Business
requirements, relying on the natural key, then need to be translated to the surrogate key. A strategy is to draw a clear
distinction between the logical model (in which surrogate keys do not appear) and the physical implementation of
that model, to ensure that the logical model is correct and reasonably well normalised, and to ensure that the physical
model is a correct implementation of the logical model.

Inadvertent disclosure
Proprietary information can be leaked if sequential key generators are used. By subtracting a previously generated
sequential key from a recently generated sequential key, one could learn the number of rows inserted during that
time period. This could expose, for example, the number of transactions or new accounts per period. There are a few
ways to overcome this problem:
•• Increase the sequential number by a random amount.
• Generate a completely random primary key. However, to prevent duplication which would cause an insert

rejection, a randomly generated primary key must either be queried (to check that it is not already in use), or the
key must contain enough entropy that one can be confident that collisions will not happen.

Inadvertent assumptions
One might incorrectly infer from sequentially generated surrogate keys that events with a higher primary key value
occurred after events with a lower primary key value. The sequential primary key implies nothing of the kind. It is
possible for inserts to fail and leave gaps, and for those gaps to be filled at some later time. A sequential key value is
not a reliable indicator of chronology. If chronology is important, rely not upon the sequential key but upon a
timestamp. A random key would prevent a person from making the assumption that the key has some bearing to
real-world chronology only if the person making the assumption is aware that the key is indeed random and has no
bearing upon chronology. A randomly generated primary key must be queried before assigned to prevent duplication
and cause an insert rejection.[citation needed]

References
This article is based on material taken from the Free On-line Dictionary of Computing prior to 1 November 2008 and
incorporated under the "relicensing" terms of the GFDL, version 1.3 or later.
• Nijssen, G.M. (1976). Modelling in Data Base Management Systems. North-Holland Pub. Co.

ISBN 0-7204-0459-2.
• Engles, R.W.: (1972), A Tutorial on Data-Base Organization, Annual Review in Automatic Programming, Vol.7,

Part 1, Pergamon Press, Oxford, pp. 1–64.
• Langefors, B (1968). Elementary Files and Elementary File Records, Proceedings of File 68, an IFIP/IAG

International Seminar on File Organisation, Amsterdam, November, pp. 89–96.
• Wieringa, R.; de Jonge, W. (1991). The identification of objects and roles: Object identifiers revisited. CiteSeerX:

10.1.1.16.3195 [1].
• Date, C. J. (1998). "Chapters 11 and 12". Relational Database Writings 1994–1997. ASIN 0201398141 [2].
• Carter, Breck. "Intelligent Versus Surrogate Keys" [3]. Retrieved 2006-12-03.

http://en.wikipedia.org/w/index.php?title=Information_entropy
http://en.wikipedia.org/wiki/Citation_needed
http://en.wikipedia.org/w/index.php?title=Free_On-line_Dictionary_of_Computing
http://en.wikipedia.org/w/index.php?title=GNU_Free_Documentation_License
http://en.wikipedia.org/w/index.php?title=International_Standard_Book_Number
http://en.wikipedia.org/w/index.php?title=Special:BookSources/0-7204-0459-2
http://en.wikipedia.org/w/index.php?title=B%C3%B6rje_Langefors
http://en.wikipedia.org/w/index.php?title=CiteSeer%23CiteSeerX
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.16.3195
http://en.wikipedia.org/w/index.php?title=Amazon_Standard_Identification_Number
http://www.amazon.co.uk/dp/0201398141
http://www.bcarter.com/intsurr1.htm

Surrogate key 111

• Richardson, Lee. "Create Data Disaster: Avoid Unique Indexes – (Mistake 3 of 10)" [4]. Retrieved 2008-01-19.
• Berkus, Josh. "Database Soup: Primary Keyvil, Part I" [5]. Retrieved 2006-12-03.

References
[1] http:/ / citeseerx. ist. psu. edu/ viewdoc/ summary?doi=10. 1. 1. 16. 3195
[2] http:/ / www. amazon. co. uk/ dp/ 0201398141
[3] http:/ / www. bcarter. com/ intsurr1. htm
[4] http:/ / www. nearinfinity. com/ blogs/ page/ lrichard?entry=create_data_disaster_avoid_unique
[5] http:/ / blogs. ittoolbox. com/ database/ soup/ archives/ primary-keyvil-part-i-7327

Armstrong's axioms
Armstrong's axioms are a set of axioms (or, more precisely, inference rules) used for infer all the functional
dependencies on a relational database. They were developed by William W. Armstrong on his 1974 paper.[1] The
axioms are sound in generating only functional dependencies in the closure of a set of functional dependencies
(denoted as) when applied to that set (denoted as). They are also complete in that repeated application of
these rules will generate all functional dependencies in the closure .
More formally, let < (), > denote a relational scheme over the set of attributes with a set of functional
dependencies . We say that a functional dependency is logically implied by ,and denote it with if
and only if for every instance of that satisfies the functional dependencies in , r also satisfies . We
denote by the set of all functional dependencies that are logically implied by .
Furthermore, with respect to a set of inference rules , we say that a functional dependency is derivable from
the functional dependencies in by the set of inference rules , and we denote it by if and only if is
obtainable by means of repeatedly applying the inference rules in to functional dependencies in . We denote
by the set of all functional dependencies that are derivable from by inference rules in .
Then, a set of inference rules is sound if and only if the following holds:

that is to say, we cannot derive by means of functional dependencies that are not logically implied by . The
set of inference rules is said to be complete if the following holds:

more simply put, we are able to derive by all the functional dependencies that are logically implied by .

Axioms
Let () be a relation scheme over the set of attributes . Henceforth we will denote by letters , ,
any subset of and, for short, the union of two sets of attributes and by instead of the usual ;
this notation is rather standard in database theory when dealing with sets of attributes.

Axiom of Reflexivity

If , then

Axiom of augmentation
If , then for any If , then for any

http://www.nearinfinity.com/blogs/page/lrichard?entry=create_data_disaster_avoid_unique
http://blogs.ittoolbox.com/database/soup/archives/primary-keyvil-part-i-7327
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.16.3195
http://www.amazon.co.uk/dp/0201398141
http://www.bcarter.com/intsurr1.htm
http://www.nearinfinity.com/blogs/page/lrichard?entry=create_data_disaster_avoid_unique
http://blogs.ittoolbox.com/database/soup/archives/primary-keyvil-part-i-7327
http://en.wikipedia.org/w/index.php?title=Axiom
http://en.wikipedia.org/w/index.php?title=Inference_rule
http://en.wikipedia.org/w/index.php?title=Functional_dependency
http://en.wikipedia.org/w/index.php?title=Functional_dependency
http://en.wikipedia.org/w/index.php?title=William_Ward_Armstrong
http://en.wikipedia.org/w/index.php?title=Soundness
http://en.wikipedia.org/w/index.php?title=Closure_%28mathematics%29
http://en.wikipedia.org/w/index.php?title=Completeness
http://en.wikipedia.org/w/index.php?title=Database_theory

Armstrong's axioms 112

Axiom of transitivity
If and , then

Additional rules
These rules can be derived from above axioms.

Union
If and then

Decomposition
If then and

Pseudo transitivity
If and then

Armstrong relation
Given a set of functional dependencies , the Armstrong relation is a relation which satisfies all the functional
dependencies in the closure and only those dependencies. Unfortunately, the minimum-size Armstrong relation
for a given set of dependencies can have a size which is an exponential function of the number of attributes in the
dependencies considered.

External links
• UMBC CMSC 461 Spring '99 [2]

• CS345 Lecture Notes from Stanford University [3]

References
[1] William Ward Armstrong: Dependency Structures of Data Base Relationships, page 580-583. IFIP Congress, 1974.
[2] http:/ / www. cs. umbc. edu/ courses/ 461/ current/ burt/ lectures/ lec14/
[3] http:/ / www-db. stanford. edu/ ~ullman/ cs345notes/ slides01-1. ps

http://www.cs.umbc.edu/courses/461/current/burt/lectures/lec14/
http://www-db.stanford.edu/~ullman/cs345notes/slides01-1.ps
http://www.cs.umbc.edu/courses/461/current/burt/lectures/lec14/
http://www-db.stanford.edu/~ullman/cs345notes/slides01-1.ps

113

Objects

Relation (database)

Relation, tuple, and attribute represented as table,
row, and column.

In relational database theory, a relation, as originally defined by E.F.
Codd, is a set of tuples (d1, d2, ..., dn), where each element dj is a
member of Dj, a data domain. Codd's original definition
notwithstanding, and contrary to the usual definition in mathematics,
there is no ordering to the elements of the tuples of a relation. Instead,
each element is termed an attribute value. An attribute is a name
paired with a domain (nowadays more commonly referred to as type or
data type). An attribute value is an attribute name paired with an
element of that attribute's domain, and a tuple is a set of attribute
values in which no two distinct elements have the same name. Thus, in some accounts, a tuple is described as a
function, mapping names to values.

A set of attributes in which no two distinct elements have the same name is called a heading. A set of tuples having
the same heading is called a body. A relation is thus a heading paired with a body, the heading of the relation being
also the heading of each tuple in its body. The number of attributes constituting a heading is called the degree, which
term also applies to tuples and relations. The term n-tuple refers to a tuple of degree n (n>=0).
E. F. Codd used the term relation in its mathematical sense of a finitary relation, a set of tuples on some set of n sets
S1, S2, ,Sn. Thus, an n-ary relation is interpreted, under the Closed World Assumption, as the extension of some
n-adic predicate: all and only those n-tuples whose values, substituted for corresponding free variables in the
predicate, yield propositions that hold true, appear in the relation.
The term relation schema refers to a heading paired with a set of constraints defined in terms of that heading. A
relation can thus be seen as an instantiation of a relation schema if it has the heading of that schema and it satisfies
the applicable constraints.
Sometimes a relation schema is taken to include a name. A relational database definition (database schema,
sometimes referred to as a relational schema) can thus be thought of as a collection of named relation schemas.
In implementations, the domain of each attribute is effectively a data type and a named relation schema is effectively
a relation variable or relvar for short (see Relation Variables below).
In SQL, a database language for relational databases, relations are represented by tables, where each row of a table
represents a single tuple, and where the values of each attribute form a column.

Examples
Below is an example of a relation having three named attributes: 'ID' from the domain of integers, and 'Name' and
'Address' from the domain of strings:

http://en.wikipedia.org/w/index.php?title=File%3ARelational_database_terms.svg
http://en.wikipedia.org/w/index.php?title=Tuple
http://en.wikipedia.org/w/index.php?title=Data_domain
http://en.wikipedia.org/w/index.php?title=Data_type
http://en.wikipedia.org/w/index.php?title=Function
http://en.wikipedia.org/w/index.php?title=Tuple
http://en.wikipedia.org/w/index.php?title=Edgar_F._Codd
http://en.wikipedia.org/w/index.php?title=Finitary_relation
http://en.wikipedia.org/w/index.php?title=Closed_World_Assumption
http://en.wikipedia.org/w/index.php?title=Predicate
http://en.wikipedia.org/w/index.php?title=Relation_schema
http://en.wikipedia.org/w/index.php?title=Database_schema
http://en.wikipedia.org/w/index.php?title=Relation_schema
http://en.wikipedia.org/w/index.php?title=Data_type
http://en.wikipedia.org/w/index.php?title=Relvar
http://en.wikipedia.org/w/index.php?title=Relvar
http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=Database_language
http://en.wikipedia.org/w/index.php?title=Integer
http://en.wikipedia.org/w/index.php?title=String_%28computer_science%29

Relation (database) 114

ID (Integer) Name (String) Address (String)

102 Yonezawa Akinori Naha, Okinawa

202 Murata Makoto Sendai, Miyagi

104 Sakamura Ken Kumamoto, Kumamoto

152 Matsumoto Yukihiro Okinawa, Okinawa

A predicate for this relation, using the attribute names to denote free variables, might be "Employee number ID is
known as Name and lives at Address". Examination of the relation tells us that there are just four tuples for which the
predicate holds true. So, for example, employee 102 is known only by that name, Yonezawa Akinori, and does not
live anywhere else but in Naha, Okinawa. Also, apart from the four employees shown,there is no other employee
who has both a name and an address.
Under the definition of body, the tuples of a body do not appear in any particular order - one cannot say "The tuple
of 'Murata Makoto' is above the tuple of 'Matsumoto Yukihiro'", nor can one say "The tuple of 'Yonezawa Akinori' is
the first tuple." A similar comment applies to the rows of an SQL table.
Under the definition of heading the elements of a element do not appear in any particular order either, nor, therefore
do the elements of a tuple. A similar comment does not apply here to SQL, which does define an ordering to the
columns of a table.

Relation Variables
A relational database consists of named relation variables (relvars) for the purposes of updating the database in
response to changes in the real world. An update to a single relvar causes the body of the relation assigned to that
variable to be replaced by a different set of tuples. Such variables are classified into two classes: base relation
variables and derived relation variables, the latter also known as virtual relvars but usually referred to by the
short term view.
A base relation variable is a relation variable which is not derived from any other relation variables. In SQL the
term base table equates approximately to base relation variable.
A view can be defined by an expression using the operators of the relational algebra or the relational calculus. Such
an expression operates on one or more relations and when evaluated yields another relation. The result is sometimes
referred to as a "derived" relation when the operands are relations assigned to database variables. A view is defined
by giving a name to such an expression, such that the name can subsequently be used as a variable name. (Note that
the expression must then mention at least one base relation variable.)
By using a Data Definition Language (DDL), it is able to define base relation variables. In SQL, CREATE TABLE
syntax is used to define base tables. The following is an example.

CREATE TABLE List_of_people (

 ID INTEGER,

 Name CHAR(40),

 Address CHAR(200),

 PRIMARY KEY (ID)

)

The Data Definition Language (DDL) is also used to define derived relation variables. In SQL, CREATE VIEW
syntax is used to define a derived relation variable. The following is an example.

CREATE VIEW List_of_Okinawa_people AS (

 SELECT ID, Name, Address

http://en.wikipedia.org/w/index.php?title=Relvar
http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=Data_Definition_Language
http://en.wikipedia.org/w/index.php?title=Create_%28SQL%29
http://en.wikipedia.org/w/index.php?title=Create_%28SQL%29

Relation (database) 115

 FROM List_of_people

 WHERE Address LIKE '%, Okinawa'

)

References
• Date, C. J. (2004). An Introduction to Database Systems (8 ed.). Addison–Wesley. ISBN 0-321-19784-4.

Table (database)
In relational databases and flat file databases, a table is a set of data elements (values) that is organized using a
model of vertical columns (which are identified by their name) and horizontal rows, the cell being the unit where a
row and column intersect. A table has a specified number of columns, but can have any number of rows [citation

needed]. Each row is identified by the values appearing in a particular column subset which has been identified as a
unique key index.
Table is another term for relations; although there is the difference in that a table is usually a multiset (bag) of rows
whereas a relation is a set and does not allow duplicates. Besides the actual data rows, tables generally have
associated with them some metadata, such as constraints on the table or on the values within particular
columns.Wikipedia:Disputed statement|
The data in a table does not have to be physically stored in the database. Views are also relational tables, but their
data are calculated at query time. Another example are nicknames[clarify], which represent a pointer to a table in
another database.

Comparisons with other data structures
In non-relational systems, hierarchical databases, the distant counterpart of a table is a structured file, representing
the rows of a table in each record of the file and each column in a record.This structure implies that a record can have
repeating information, Generally in the child data segments.Data are stored in sequence of records which are
equivalent to table term of a relational database.with each record having equivalent rows.
Unlike a spreadsheet, the datatype of field is ordinarily defined by the schema describing the table. Some SQL
systems, such as SQLite, are less strict about field datatype definitions.

Tables versus relations
In terms of the relational model of databases, a table can be considered a convenient representation of a relation, but
the two are not strictly equivalent. For instance, an SQL table can potentially contain duplicate rows, whereas a true
relation cannot contain duplicate tuples. Similarly, representation as a table implies a particular ordering to the rows
and columns, whereas a relation is explicitly unordered. However, the database system does not guarantee any
ordering of the rows unless an ORDER BY clause is specified in the SELECT statement that queries the table.
An equally valid representations of a relation is as an n-dimensional chart, where n is the number of attributes (a
table's columns). For example, a relation with two attributes and three values can be represented as a table with two
columns and three rows, or as a two-dimensional graph with three points. The table and graph representations are
only equivalent if the ordering of rows is not significant, and the table has no duplicate rows.

http://en.wikipedia.org/w/index.php?title=Christopher_J._Date
http://en.wikipedia.org/w/index.php?title=Addison%E2%80%93Wesley
http://en.wikipedia.org/w/index.php?title=International_Standard_Book_Number
http://en.wikipedia.org/w/index.php?title=Special:BookSources/0-321-19784-4
http://en.wikipedia.org/w/index.php?title=Flat_file_database
http://en.wikipedia.org/w/index.php?title=Cell_%28database%29
http://en.wikipedia.org/wiki/Citation_needed
http://en.wikipedia.org/wiki/Citation_needed
http://en.wikipedia.org/w/index.php?title=Multiset
http://en.wikipedia.org/w/index.php?title=Metadata
http://en.wikipedia.org/w/index.php?title=Check_constraint
http://en.wikipedia.org/wiki/Disputed_statement
http://en.wikipedia.org/w/index.php?title=View_%28database%29
http://en.wikipedia.org/wiki/Please_clarify
http://en.wikipedia.org/w/index.php?title=Hierarchical_model
http://en.wikipedia.org/w/index.php?title=Computer_file
http://en.wikipedia.org/w/index.php?title=Spreadsheet
http://en.wikipedia.org/w/index.php?title=Datatype
http://en.wikipedia.org/w/index.php?title=Logical_schema
http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=SQLite
http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=Tuple
http://en.wikipedia.org/w/index.php?title=Order_by_%28SQL%29
http://en.wikipedia.org/w/index.php?title=Select_%28SQL%29
http://en.wikipedia.org/w/index.php?title=Graphic%23Graphs

Table (database) 116

Table types
Two types of tables exist:
• A relational table, which is the basic structure to hold user data in a relational database.
• An object table, which is a table that uses an object type to define a column. It is defined to hold instances of

objects of a defined type.
In SQL, the CREATE TABLE statement creates these tables.

References

Column (database)
In the context of a relational database table, a column is a set of data values of a particular simple type, one for each
row of the table.[1] The columns provide the structure according to which the rows are composed.
The term field is often used interchangeably with column, although many consider it more correct to use field (or
field value) to refer specifically to the single item that exists at the intersection between one row and one column.
In relational database terminology, column's equivalent is called attribute.
For example, a table that represents companies might have the following columns:
•• ID (integer identifier, unique to each row)
•• Name (text)
•• Address line 1 (text)
•• Address line 2 (text)
•• City (integer identifier, drawn from a separate table of cities, from which any state or country information would

be drawn)
•• Postal code (text)
•• Industry (integer identifier, drawn from a separate table of industries)
•• etc.
Each row would provide a data value for each column and would then be understood as a single structured data
value, in this case representing a company. More formally, each row can be interpreted as a relvar, composed of a set
of tuples, with each tuple consisting of the two items: the name of the relevant column and the value this row
provides for that column.

Column 1 Column 2

Row 1 Row 1, Column 1 Row 1, Column 2

Row 2 Row 2, Column 1 Row 2, Column 2

Row 3 Row 3, Column 1 Row 3, Column 2

Examples of database: MySQL, SQL Server, Access, Oracle, Sybase, DB2.
Coding involved: SQL [Structured Query Language]
See more at SQL.

http://en.wikipedia.org/w/index.php?title=Relational_table
http://en.wikipedia.org/w/index.php?title=Object_table
http://en.wikipedia.org/w/index.php?title=Data
http://en.wikipedia.org/w/index.php?title=Datatype
http://en.wikipedia.org/w/index.php?title=Field_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Relvar
http://en.wikipedia.org/w/index.php?title=Tuple
http://en.wikipedia.org/w/index.php?title=SQL

Column (database) 117

References
[1] The term "column" also has equivalent application in other, more generic contexts. See e.g., Flat file database, Table (information).

Row (database)
In the context of a relational database, a row—also called a record or tuple—represents a single, implicitly
structured data item in a table. In simple terms, a database table can be thought of as consisting of rows and columns
or fields. Each row in a table represents a set of related data, and every row in the table has the same structure.
For example, in a table that represents companies, each row would represent a single company. Columns might
represent things like company name, company street address, whether the company is publicly held, its VAT
number, etc.. In a table that represents the association of employees with departments, each row would associate one
employee with one department.
In a less formal usage, e.g. for a database which is not formally relational, a record is equivalent to a row as
described above, but is not usually referred to as a row.
The implicit structure of a row, and the meaning of the data values in a row, requires that the row be understood as
providing a succession of data values, one in each column of the table. The row is then interpreted as a relvar
composed of a set of tuples, with each tuple consisting of the two items: the name of the relevant column and the
value this row provides for that column.
Each column expects a data value of a particular type. For example, one column might require a unique identifier,
another might require text representing a person's name, another might require an integer representing hourly pay in
cents.

- Column 1 Column 2

Row 1 Row 1, Column 1 Row 1, Column 2

Row 2 Row 2, Column 1 Row 2, Column 2

Row 3 Row 3, Column 1 Row 3, Column 2

http://en.wikipedia.org/w/index.php?title=Flat_file_database
http://en.wikipedia.org/w/index.php?title=Table_%28information%29
http://en.wikipedia.org/w/index.php?title=Record_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Tuple
http://en.wikipedia.org/w/index.php?title=Data
http://en.wikipedia.org/w/index.php?title=Value_added_tax_identification_number
http://en.wikipedia.org/w/index.php?title=Value_added_tax_identification_number
http://en.wikipedia.org/w/index.php?title=Relvar
http://en.wikipedia.org/w/index.php?title=Tuple
http://en.wikipedia.org/w/index.php?title=Datatype
http://en.wikipedia.org/w/index.php?title=Identifier
http://en.wikipedia.org/w/index.php?title=Cent_%28currency%29

View (SQL) 118

View (SQL)
In database theory, a view is the result set of a stored query — or map-and-reduce functions — on the data, which
the database users can query just as they would a persistent database collection object. This pre-established query
command is kept in the database dictionary. Unlike ordinary base tables in a relational database, a view does not
form part of the physical schema: as a result set, it is a virtual table computed or collated from data in the database,
dynamically when access to that view is requested. Changes applied to the data in a relevant underlying table are
reflected in the data shown in subsequent invocations of the view. In some NoSQL databases, views are the only way
to query data.
Views can provide advantages over tables:
•• Views can represent a subset of the data contained in a table; consequently, a view can limit the degree of

exposure of the underlying tables to the outer world: a given user may have permission to query the view, while
denied access to the rest of the base table.

• Views can join and simplify multiple tables into a single virtual table
• Views can act as aggregated tables, where the database engine aggregates data (sum, average etc.) and presents

the calculated results as part of the data
• Views can hide the complexity of data; for example a view could appear as Sales2000 or Sales2001, transparently

partitioning the actual underlying table
•• Views take very little space to store; the database contains only the definition of a view, not a copy of all the data

which it presents
• Depending on the SQL engine used, views can provide extra security
Just as a function (in programming) can provide abstraction, so can a database view. In another parallel with
functions, database users can manipulate nested views, thus one view can aggregate data from other views. Without
the use of views, the normalization of databases above second normal form would become much more difficult.
Views can make it easier to create lossless join decomposition.
Just as rows in a base table lack any defined ordering, rows available through a view do not appear with any default
sorting. A view is a relational table, and the relational model defines a table as a set of rows. Since sets are not
ordered - by definition - nor are the rows of a view. Therefore, an ORDER BY clause in the view definition is
meaningless; the SQL standard (SQL:2003) does not allow an ORDER BY clause in the subquery of a CREATE
VIEW command, just as it is refused in a CREATE TABLE statement. However, sorted data can be obtained from a
view, in the same way as any other table — as part of a query statement on that view. Nevertheless, some DBMS
(such as Oracle Database) do not abide by this SQL standard restriction.

Read-only vs. updatable views
Database practitioners can define views as read-only or updatable. If the database system can determine the reverse
mapping from the view schema to the schema of the underlying base tables, then the view is updatable. INSERT,
UPDATE, and DELETE operations can be performed on updatable views. Read-only views do not support such
operations because the DBMS cannot map the changes to the underlying base tables. A view update is done by key
preservation.
Some systems support the definition of INSTEAD OF triggers on views. This technique allows the definition of
other logic for execution in place of an insert, update, or delete operation on the views. Thus database systems can
implement data modifications based on read-only views. However, an INSTEAD OF trigger does not change the
read-only or updatable property of the view itself.

http://en.wikipedia.org/w/index.php?title=Database_theory
http://en.wikipedia.org/w/index.php?title=Result_set
http://en.wikipedia.org/w/index.php?title=Map_%28higher-order_function%29
http://en.wikipedia.org/w/index.php?title=Fold_%28higher-order_function%29
http://en.wikipedia.org/w/index.php?title=Data
http://en.wikipedia.org/w/index.php?title=Database_design
http://en.wikipedia.org/w/index.php?title=Join_%28SQL%29
http://en.wikipedia.org/w/index.php?title=Database_engine
http://en.wikipedia.org/w/index.php?title=Sum
http://en.wikipedia.org/w/index.php?title=Average
http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=Function_%28computing%29
http://en.wikipedia.org/w/index.php?title=Abstraction_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Second_normal_form
http://en.wikipedia.org/w/index.php?title=Order_by_%28SQL%29
http://en.wikipedia.org/w/index.php?title=SQL:2003
http://en.wikipedia.org/w/index.php?title=Statement_%28programming%29
http://en.wikipedia.org/w/index.php?title=Oracle_Database
http://en.wikipedia.org/w/index.php?title=File_system_permissions
http://en.wikipedia.org/w/index.php?title=Insert_%28SQL%29
http://en.wikipedia.org/w/index.php?title=Update_%28SQL%29
http://en.wikipedia.org/w/index.php?title=Delete_%28SQL%29

View (SQL) 119

Advanced view features
Various database management systems have extended the views from read-only subsets of data.
Oracle Database introduced the concept of materialized views: pre-executed, non-virtual views commonly used in
data warehousing. They give a static snapshot of the data and may include data from remote sources. The accuracy
of a materialized view depends on the frequency of trigger mechanisms behind its updates. IBM DB2 provides
so-called "materialized query tables" (MQTs) for the same purpose. Microsoft SQL Server introduced in its 2000
version indexed views which only store a separate index from the table, but not the entire data. PostgreSQL
implemented materialized views in its 9.3 release.

Equivalence
A view is equivalent to its source query. When queries are run against views, the query is modified. For example, if
there exists a view named accounts_view with the content as follows:

accounts_view:

SELECT name,

 money_received,

 money_sent,

 (money_received - money_sent) AS balance,

 address,

 ...

 FROM table_customers c

 JOIN accounts_table a

 ON a.customer_id = c.customer_id

then the application could run a simple query such as:

Simple query

SELECT name,

 balance

 FROM accounts_view

The RDBMS then takes the simple query, replaces the equivalent view, then sends the following to the query
optimizer:

Preprocessed query:

SELECT name,

 balance

 FROM (SELECT name,

 money_received,

 money_sent,

 (money_received - money_sent) AS balance,

 address,

 ...

 FROM table_customers c JOIN accounts_table a

 ON a.customer_id = c.customer_id)

http://en.wikipedia.org/w/index.php?title=Database_management_system
http://en.wikipedia.org/w/index.php?title=Data
http://en.wikipedia.org/w/index.php?title=Oracle_Database
http://en.wikipedia.org/w/index.php?title=Materialized_view
http://en.wikipedia.org/w/index.php?title=Data_warehouse
http://en.wikipedia.org/w/index.php?title=IBM_DB2
http://en.wikipedia.org/w/index.php?title=Microsoft_SQL_Server
http://en.wikipedia.org/w/index.php?title=PostgreSQL
http://en.wikipedia.org/w/index.php?title=Query_optimizer
http://en.wikipedia.org/w/index.php?title=Query_optimizer

View (SQL) 120

From this point on the optimizer takes the query, removes unnecessary complexity (for example: it is not necessary
to read the address, since the parent invocation does not make use of it) and then sends the query to the SQL engine
for processing.

External links
• Materialized query tables in DB2 [1]

• Views in Microsoft SQL Server [2]

• Views in MySQL [3]

• Views in PostgreSQL [4]

• Views in SQLite [5]

• Views in Oracle 11.2 [6]

• Views in CouchDB [7]

• Materialized Views in Oracle 11.2 [8]

References
[1] http:/ / publib. boulder. ibm. com/ infocenter/ dzichelp/ v2r2/ index. jsp?topic=/ com. ibm. db2z10. doc. intro/ src/ tpc/ db2z_typesoftables.

htm
[2] http:/ / msdn. microsoft. com/ en-us/ library/ ms187956. aspx
[3] http:/ / dev. mysql. com/ doc/ refman/ 5. 1/ en/ views. html
[4] http:/ / www. postgresql. org/ docs/ current/ interactive/ tutorial-views. html
[5] http:/ / www. sqlite. org/ lang_createview. html
[6] http:/ / download. oracle. com/ docs/ cd/ E11882_01/ server. 112/ e17118/ statements_8004. htm#SQLRF01504
[7] http:/ / wiki. apache. org/ couchdb/ Introduction_to_CouchDB_views
[8] http:/ / download. oracle. com/ docs/ cd/ E11882_01/ server. 112/ e17118/ statements_6002. htm#SQLRF01302

Database transaction
A transaction comprises a unit of work performed within a database management system (or similar system) against
a database, and treated in a coherent and reliable way independent of other transactions. Transactions in a database
environment have two main purposes:
1.1. To provide reliable units of work that allow correct recovery from failures and keep a database consistent even in

cases of system failure, when execution stops (completely or partially) and many operations upon a database
remain uncompleted, with unclear status.

2.2. To provide isolation between programs accessing a database concurrently. If this isolation is not provided, the
program's outcome are possibly erroneous.

A database transaction, by definition, must be atomic, consistent, isolated and durable.[1] Database practitioners often
refer to these properties of database transactions using the acronym ACID.
Transactions provide an "all-or-nothing" proposition, stating that each work-unit performed in a database must either
complete in its entirety or have no effect whatsoever. Further, the system must isolate each transaction from other
transactions, results must conform to existing constraints in the database, and transactions that complete successfully
must get written to durable storage.

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/index.jsp?topic=/com.ibm.db2z10.doc.intro/src/tpc/db2z_typesoftables.htm
http://msdn.microsoft.com/en-us/library/ms187956.aspx
http://dev.mysql.com/doc/refman/5.1/en/views.html
http://www.postgresql.org/docs/current/interactive/tutorial-views.html
http://www.sqlite.org/lang_createview.html
http://download.oracle.com/docs/cd/E11882_01/server.112/e17118/statements_8004.htm#SQLRF01504
http://wiki.apache.org/couchdb/Introduction_to_CouchDB_views
http://download.oracle.com/docs/cd/E11882_01/server.112/e17118/statements_6002.htm#SQLRF01302
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/index.jsp?topic=/com.ibm.db2z10.doc.intro/src/tpc/db2z_typesoftables.htm
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/index.jsp?topic=/com.ibm.db2z10.doc.intro/src/tpc/db2z_typesoftables.htm
http://msdn.microsoft.com/en-us/library/ms187956.aspx
http://dev.mysql.com/doc/refman/5.1/en/views.html
http://www.postgresql.org/docs/current/interactive/tutorial-views.html
http://www.sqlite.org/lang_createview.html
http://download.oracle.com/docs/cd/E11882_01/server.112/e17118/statements_8004.htm#SQLRF01504
http://wiki.apache.org/couchdb/Introduction_to_CouchDB_views
http://download.oracle.com/docs/cd/E11882_01/server.112/e17118/statements_6002.htm#SQLRF01302
http://en.wikipedia.org/w/index.php?title=Database_management_system
http://en.wikipedia.org/w/index.php?title=Atomicity_%28database_systems%29
http://en.wikipedia.org/w/index.php?title=Consistency_%28database_systems%29
http://en.wikipedia.org/w/index.php?title=Isolation_%28database_systems%29
http://en.wikipedia.org/w/index.php?title=Durability_%28database_systems%29

Database transaction 121

Purpose
Databases and other data stores which treat the integrity of data as paramount often include the ability to handle
transactions to maintain the integrity of data. A single transaction consists of one or more independent units of work,
each reading and/or writing information to a database or other data store. When this happens it is often important to
ensure that all such processing leaves the database or data store in a consistent state.
Examples from double-entry accounting systems often illustrate the concept of transactions. In double-entry
accounting every debit requires the recording of an associated credit. If one writes a check for $100 to buy groceries,
a transactional double-entry accounting system must record the following two entries to cover the single transaction:
1.1. Debit $100 to Groceries Expense Account
2.2. Credit $100 to Checking Account
A transactional system would make both entries pass or both entries would fail. By treating the recording of multiple
entries as an atomic transactional unit of work the system maintains the integrity of the data recorded. In other
words, nobody ends up with a situation in which a debit is recorded but no associated credit is recorded, or vice
versa.

Transactional databases
A transactional database is a DBMS where write transactions on the database are able to be rolled back if they are
not completed properly (e.g. due to power or connectivity loss).
Most modern[2] relational database management systems fall into the category of databases that support
transactions.
In a database system a transaction might consist of one or more data-manipulation statements and queries, each
reading and/or writing information in the database. Users of database systems consider consistency and integrity of
data as highly important. A simple transaction is usually issued to the database system in a language like SQL
wrapped in a transaction, using a pattern similar to the following:
1.1. Begin the transaction
2.2. Execute a set of data manipulations and/or queries
3.3. If no errors occur then commit the transaction and end it
4.4. If errors occur then rollback the transaction and end it
If no errors occurred during the execution of the transaction then the system commits the transaction. A transaction
commit operation applies all data manipulations within the scope of the transaction and persists the results to the
database. If an error occurs during the transaction, or if the user specifies a rollback operation, the data manipulations
within the transaction are not persisted to the database. In no case can a partial transaction be committed to the
database since that would leave the database in an inconsistent state.
Internally, multi-user databases store and process transactions, often by using a transaction ID or XID.
There are multiple varying ways for transactions to be implemented other than the simple way documented above.
Nested transactions, for example, are transactions which contain statements within them that start new transactions
(i.e. sub-transactions). Multi-level transactions are similar but have a few extra properties[citation needed]. Another type
of transaction is the compensating transaction.

http://en.wikipedia.org/w/index.php?title=Data_integrity
http://en.wikipedia.org/w/index.php?title=Double-entry_bookkeeping_system
http://en.wikipedia.org/w/index.php?title=DBMS
http://en.wikipedia.org/w/index.php?title=Database_transaction&action=edit
http://en.wikipedia.org/w/index.php?title=Database_system
http://en.wikipedia.org/w/index.php?title=Data_consistency
http://en.wikipedia.org/w/index.php?title=Data_integrity
http://en.wikipedia.org/w/index.php?title=Structured_Query_Language
http://en.wikipedia.org/w/index.php?title=Rollback_%28data_management%29
http://en.wikipedia.org/w/index.php?title=Identifier
http://en.wikipedia.org/w/index.php?title=Nested_transaction
http://en.wikipedia.org/w/index.php?title=Multi-level_transaction
http://en.wikipedia.org/wiki/Citation_needed
http://en.wikipedia.org/w/index.php?title=Compensating_transaction

Database transaction 122

In SQL
SQL is inherently transactional, and a transaction is automatically started when another ends. Some databases extend
SQL and implement a START TRANSACTION statement, but while seemingly signifying the start of the
transaction it merely deactivates autocommit.[citation needed]

The result of any work done after this point will remain invisible to other database-users until the system processes a
COMMIT statement. A ROLLBACK statement can also occur, which will undo any work performed since the last
transaction. Both COMMIT and ROLLBACK will end the transaction, and start anew. If autocommit was disabled
using START TRANSACTION, autocommit will often also be reenabled.
Some database systems allow the synonyms BEGIN, BEGIN WORK and BEGIN TRANSACTION, and may have
other options available.

Distributed transactions
Database systems implement distributed transactions as transactions against multiple applications or hosts. A
distributed transaction enforces the ACID properties over multiple systems or data stores, and might include systems
such as databases, file systems, messaging systems, and other applications. In a distributed transaction a coordinating
service ensures that all parts of the transaction are applied to all relevant systems. As with database and other
transactions, if any part of the transaction fails, the entire transaction is rolled back across all affected systems.

Transactional filesystems
The Namesys Reiser4 filesystem for Linux[3] supports transactions, and as of Microsoft Windows Vista, the
Microsoft NTFS filesystem[4] supports distributed transactions across networks.

References
[1] A transaction is a group of operations that are atomic, consistent, isolated, and durable ([[ACID (http:/ / msdn. microsoft. com/ en-us/ library/

aa366402(VS. 85). aspx)]).]
[2] http:/ / en. wikipedia. org/ w/ index. php?title=Database_transaction& action=edit
[3] http:/ / namesys. com/ v4/ v4. html#committing
[4] http:/ / msdn. microsoft. com/ library/ default. asp?url=/ library/ en-us/ fileio/ fs/ portal. asp

Further reading
• Philip A. Bernstein, Eric Newcomer (2009): Principles of Transaction Processing, 2nd Edition (http:/ / www.

elsevierdirect. com/ product. jsp?isbn=9781558606234), Morgan Kaufmann (Elsevier), ISBN 978-1-55860-623-4
• Gerhard Weikum, Gottfried Vossen (2001), Transactional information systems: theory, algorithms, and the

practice of concurrency control and recovery, Morgan Kaufmann, ISBN 1-55860-508-8

http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=Autocommit
http://en.wikipedia.org/wiki/Citation_needed
http://en.wikipedia.org/w/index.php?title=Commit_%28SQL%29
http://en.wikipedia.org/w/index.php?title=Rollback_%28data_management%29
http://en.wikipedia.org/w/index.php?title=Autocommit
http://en.wikipedia.org/w/index.php?title=Distributed_transaction
http://en.wikipedia.org/w/index.php?title=Namesys
http://en.wikipedia.org/w/index.php?title=Reiser4
http://en.wikipedia.org/w/index.php?title=Linux
http://en.wikipedia.org/w/index.php?title=Microsoft
http://en.wikipedia.org/w/index.php?title=Windows_Vista
http://en.wikipedia.org/w/index.php?title=NTFS
http://en.wikipedia.org/w/index.php?title=Distributed_transactions
http://msdn.microsoft.com/en-us/library/aa366402(VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa366402(VS.85).aspx
http://en.wikipedia.org/w/index.php?title=Database_transaction&action=edit
http://namesys.com/v4/v4.html#committing
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/fileio/fs/portal.asp
http://en.wikipedia.org/w/index.php?title=Philip_A._Bernstein
http://www.elsevierdirect.com/product.jsp?isbn=9781558606234
http://www.elsevierdirect.com/product.jsp?isbn=9781558606234

Transaction log 123

Transaction log
In the field of databases in computer science, a transaction log (also transaction journal, database log, binary log
or audit trail) is a history of actions executed by a database management system to guarantee ACID properties over
crashes or hardware failures. Physically, a log is a file of updates done to the database, stored in stable storage.
If, after a start, the database is found in an inconsistent state or not been shut down properly, the database
management system reviews the database logs for uncommitted transactions and rolls back the changes made by
these transactions. Additionally, all transactions that are already committed but whose changes were not yet
materialized in the database are re-applied. Both are done to ensure atomicity and durability of transactions.
This term is not to be confused with other, human-readable logs that a database management system usually
provides.

Anatomy of a general database log
A database log record is made up of:
• Log Sequence Number: A unique id for a log record. With LSNs, logs can be recovered in constant time. Most

logs' LSNs are assigned in monotonically increasing order, which is useful in recovery algorithms, like ARIES.
• Prev LSN: A link to the last log record. This implies database logs are constructed in linked list form.
• Transaction ID number: A reference to the database transaction generating the log record.
• Type: Describes the type of database log record.
•• Information about the actual changes that triggered the log record to be written.

Types of database log records
All log records include the general log attributes above, and also other attributes depending on their type (which is
recorded in the Type attribute, as above).
• Update Log Record notes an update (change) to the database. It includes this extra information:

• PageID: A reference to the Page ID of the modified page.
• Length and Offset: Length in bytes and offset of the page are usually included.
• Before and After Images: Includes the value of the bytes of page before and after the page change. Some

databases may have logs which include one or both images.
• Compensation Log Record notes the rollback of a particular change to the database. Each correspond with

exactly one other Update Log Record (although the corresponding update log record is not typically stored in the
Compensation Log Record). It includes this extra information:
• undoNextLSN: This field contains the LSN of the next log record that is to be undone for transaction that wrote

the last Update Log.
• Commit Record notes a decision to commit a transaction.
• Abort Record notes a decision to abort and hence roll back a transaction.
• Checkpoint Record notes that a checkpoint has been made. These are used to speed up recovery. They record

information that eliminates the need to read a long way into the log's past. This varies according to checkpoint
algorithm. If all dirty pages are flushed while creating the checkpoint (as in PostgreSQL), it might contain:
• redoLSN: This is a reference to the first log record that corresponds to a dirty page. i.e. the first update that

wasn't flushed at checkpoint time. This is where redo must begin on recovery.
• undoLSN: This is a reference to the oldest log record of the oldest in-progress transaction. This is the oldest log

record needed to undo all in-progress transactions.

http://en.wikipedia.org/w/index.php?title=Computer_science
http://en.wikipedia.org/w/index.php?title=Database_management_system
http://en.wikipedia.org/w/index.php?title=Crash_%28computing%29
http://en.wikipedia.org/w/index.php?title=Computer_file
http://en.wikipedia.org/w/index.php?title=Database_consistency
http://en.wikipedia.org/w/index.php?title=Commit_%28data_management%29
http://en.wikipedia.org/w/index.php?title=Rollback_%28data_management%29
http://en.wikipedia.org/w/index.php?title=Atomicity_%28database_systems%29
http://en.wikipedia.org/w/index.php?title=Durability_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Data_logging%23Computer_data_logging
http://en.wikipedia.org/w/index.php?title=Algorithm
http://en.wikipedia.org/w/index.php?title=Algorithms_for_Recovery_and_Isolation_Exploiting_Semantics
http://en.wikipedia.org/w/index.php?title=Linked_list
http://en.wikipedia.org/w/index.php?title=PostgreSQL

Transaction log 124

• Completion Record notes that all work has been done for this particular transaction. (It has been fully committed
or aborted)

Tables
These tables are maintained in memory, and can be efficiently reconstructed (if not exactly, to an equivalent state)
from the log and the database:
• Transaction Table: The table contains one entry for each active transaction. This includes Transaction ID and

lastLSN, where lastLSN describes the LSN of the most recent log record for the transaction.
• Dirty Page Table: The table contains one entry for each dirty page that hasn't been written to disk. The entry

contains recLSN, where recLSN is the LSN of the first log record that caused the page to be dirty.
• Transaction Log: A DBMS uses a transaction log to keep track of all transactions that updates the database. The

information stored in this log is used by DBMS for a recovery requirement triggered by 'Roll Back' statement.

Database trigger
A database trigger is procedural code that is automatically executed in response to certain events on a particular
table or view in a database. The trigger is mostly used for maintaining the integrity of the information on the
database. For example, when a new record (representing a new worker) is added to the employees table, new records
should also be created in the tables of the taxes, vacations and salaries.

The need and the usage
Triggers are commonly used to:
•• audit changes (e.g. keep a log of the users and roles involved in changes)
•• enhance changes (e.g. ensure that every change to a record is time-stamped by the server's clock)
• enforce business rules (e.g. require that every invoice have at least one line item)
•• execute business rules (e.g. notify a manager every time an employee's bank account number changes)
•• replicate data (e.g. store a record of every change, to be shipped to another database later)
•• enhance performance (e.g. update the account balance after every detail transaction, for faster queries)
The examples above are called Data Manipulation Language (DML) triggers because the triggers are defined as part
of the Data Manipulation Language and are executed at the time the data is manipulated. SomeWikipedia:Avoid
weasel words systems also support non-data triggers, which fire in response to Data Definition Language (DDL)
events such as creating tables, or runtime events such as logon, commit and rollback. Such DDL triggers can be used
for database auditing purposes.
The following are major features of database triggers and their effects:
•• triggers do not accept parameters or arguments (but may store affected-data in temporary tables)
•• triggers cannot perform commit or rollback operations because they are part of the triggering SQL statement (only

through autonomous transactions)

http://en.wikipedia.org/w/index.php?title=Procedural_code
http://en.wikipedia.org/w/index.php?title=View_%28database%29
http://en.wikipedia.org/w/index.php?title=Database_integrity
http://en.wikipedia.org/w/index.php?title=Business_rule
http://en.wikipedia.org/w/index.php?title=Data_Manipulation_Language
http://en.wikipedia.org/wiki/Avoid_weasel_words
http://en.wikipedia.org/wiki/Avoid_weasel_words
http://en.wikipedia.org/w/index.php?title=Data_Definition_Language
http://en.wikipedia.org/w/index.php?title=Database_audit

Database trigger 125

Triggers in DBMS
Below follows a series of descriptions of how some popular DBMS support triggers.

Oracle
In addition to triggers that fire when data is modified, Oracle 9i supports triggers that fire when schema objects (that
is, tables) are modified and when user logon or logoff events occur. These trigger types are referred to as
"Schema-level triggers".

Schema-level triggers

•• After Creation
•• Before Alter
•• After Alter
•• Before Drop
•• After Drop
•• Before Logoff
•• After Logon
The four main types of triggers are:
1. Row Level Trigger: This gets executed before or after any column value of a row changes
2. Column Level Trigger: This gets executed before or after the specified column changes
3.3. For Each Row Type: This trigger gets executed once for each row of the result set caused by insert/update/delete
4.4. For Each Statement Type: This trigger gets executed only once for the entire result set, but fires each time the

statement is executed.

Mutating tables

When a single SQL statement modifies several rows of a table at once, the order of the operations is not
well-defined; there is no "order by" clause on "update" statements, for example. Row-level triggers are executed as
each row is modified, so the order in which trigger code is run is also not well-defined. Oracle protects the
programmer from this uncertainty by preventing row-level triggers from modifying other rows in the same table –
this is the "mutating table" in the error message. Side-effects on other tables are allowed, however.
One solution is to have row-level triggers place information into a temporary table indicating what further changes
need to be made, and then have a statement-level trigger fire just once, at the end, to perform the requested changes
and clean up the temporary table.
Because a foreign key's referential actions are implemented via implied triggers, they are similarly restricted. This
may become a problem when defining a self-referential foreign key, or a cyclical set of such constraints, or some
other combination of triggers and CASCADE rules, e.g. user deletes a record from table A, CASCADE rule on table
A deletes a record from table B, trigger on table B attempts to SELECT from table A, error occurs.

http://en.wikipedia.org/w/index.php?title=DBMS
http://en.wikipedia.org/w/index.php?title=Oracle_Database
http://en.wikipedia.org/w/index.php?title=Foreign_key%23Referential_actions

Database trigger 126

Microsoft SQL Server
Microsoft SQL Server supports triggers either before, after, or instead of an insert, update or delete operation. They
can be set on tables and views with the constraint that a view can be referenced only by an INSTEAD OF trigger.
Microsoft SQL Server 2005 introduced support for Data Definition Language (DDL) triggers, which can fire in
reaction to a very wide range of events, including:
•• Drop table
•• Create table
•• Alter table
•• Login events
A full list [1] is available on MSDN.
Performing conditional actions in triggers (or testing data following modification) is done through accessing the
temporary Inserted and Deleted tables.

PostgreSQL
PostgreSQL introduced support for triggers in 1997. The following functionality in SQL:2003 was previously not
implemented in PostgreSQL:
•• SQL allows triggers to fire on updates to specific columns; As of version 9.0 of PostgreSQL this feature is also

implemented in PostgreSQL.
• The standard allows the execution of a number of SQL statements other than SELECT, INSERT, UPDATE, such

as CREATE TABLE as the triggered action. This can be done through creating a stored procedure or function to
call CREATE TABLE.[2]

Synopsis:

CREATE TRIGGER name { BEFORE | AFTER } { event [OR ...] }

 ON TABLE [FOR [EACH] { ROW | STATEMENT }]

 EXECUTE PROCEDURE funcname (arguments)

Firebird
Firebird supports multiple row-level, BEFORE or AFTER, INSERT, UPDATE, DELETE (or any combination
thereof) triggers per table, where they are always "in addition to" the default table changes, and the order of the
triggers relative to each other can be specified where it would otherwise be ambiguous (POSITION clause.) Triggers
may also exist on views, where they are always "instead of" triggers, replacing the default updatable view logic.
(Before version 2.1, triggers on views deemed updatable would run in addition to the default logic.)
Firebird does not raise mutating table exceptions (like Oracle), and triggers will by default both nest and recurse as
required (SQL Server allows nesting but not recursion, by default.) Firebird's triggers use NEW and OLD context
variables (not Inserted and Deleted tables,) and provide UPDATING, INSERTING, and DELETING flags to
indicate the current usage of the trigger.

{CREATE | RECREATE | CREATE OR ALTER} TRIGGER name FOR {table name |

view name}

 [ACTIVE | INACTIVE]

 {BEFORE | AFTER}

 {INSERT [OR UPDATE] [OR DELETE] | UPDATE [OR INSERT] [OR DELETE] |

DELETE [OR UPDATE] [OR INSERT] }

 [POSITION n] AS

BEGIN

http://en.wikipedia.org/w/index.php?title=Microsoft_SQL_Server
http://en.wikipedia.org/w/index.php?title=View_%28database%29
http://en.wikipedia.org/w/index.php?title=Data_Definition_Language
http://en.wikipedia.org/w/index.php?title=Drop_%28SQL%29
http://en.wikipedia.org/w/index.php?title=Create_%28SQL%29
http://en.wikipedia.org/w/index.php?title=Alter_%28SQL%29
http://msdn2.microsoft.com/en-us/library/ms189871(SQL.90).aspx
http://en.wikipedia.org/w/index.php?title=MSDN
http://en.wikipedia.org/w/index.php?title=PostgreSQL
http://en.wikipedia.org/w/index.php?title=SQL:2003
http://en.wikipedia.org/w/index.php?title=Firebird_%28database_server%29

Database trigger 127

END

As of version 2.1, Firebird additionally supports the following database-level triggers:
•• CONNECT (exceptions raised here prevent the connection from completing)
•• DISCONNECT
•• TRANSACTION START
•• TRANSACTION COMMIT (exceptions raised here prevent the transaction from committing, or preparing if a

two-phase commit is involved)
•• TRANSACTION ROLLBACK
Database-level triggers can help enforce multi-table constraints, or emulate materialized views. If an exception is
raised in a TRANSACTION COMMIT trigger, the changes made by the trigger so far are rolled back and the client
application is notified, but the transaction remains active as if COMMIT had never been requested; the client
application can continue to make changes and re-request COMMIT.
Syntax for database triggers:

{CREATE | RECREATE | CREATE OR ALTER} TRIGGER name

 [ACTIVE | INACTIVE] ON

 {CONNECT | DISCONNECT | TRANSACTION START | TRANSACTION COMMIT |

TRANSACTION ROLLBACK}

 [POSITION n] AS

BEGIN

END

MySQL
MySQL 5.0.2 introduced support for triggers. MySQL supports these trigger types:
•• Insert Trigger
•• Update Trigger
•• Delete Trigger
Note: MySQL allows only one trigger of each type on each table (i.e. one before insert, one after insert, one before
update, one after update, one before delete and one after delete).
Note: MySQL does NOT fire triggers outside of a statement (i.e. API's, foreign key cascades)
The SQL:2003 standard mandates that triggers give programmers access to record variables by means of a syntax
such as REFERENCING NEW AS n. For example, if a trigger is monitoring for changes to a salary column one
could write a trigger like the following:

CREATE TRIGGER salary_trigger

 BEFORE UPDATE ON employee_table

 REFERENCING NEW ROW AS n, OLD ROW AS o

 FOR EACH ROW

 IF n.salary <> o.salary THEN

 END IF;

;

Sample Mytrigger as follows:

http://en.wikipedia.org/w/index.php?title=Materialized_view
http://en.wikipedia.org/w/index.php?title=MySQL
http://en.wikipedia.org/w/index.php?title=SQL:2003

Database trigger 128

-- First of all, drop any other trigger with the same name

DROP TRIGGER IF EXISTS `Mytrigger`;

-- Create New Trigger

DELIMITER $$

CREATE

 /*[DEFINER = { user | CURRENT_USER }]*/

 TRIGGER `DB`.`mytriggers` BEFORE/AFTER INSERT/UPDATE/DELETE

 ON `DB`.`<Table Name>`

 FOR EACH ROW BEGIN

 END$$

DELIMITER ;

-- Example:

DROP TRIGGER IF EXISTS `Mytrigger`;

DELIMITER $$

CREATE TRIGGER `Mytrigger`

AFTER INSERT ON Table_Current

FOR EACH ROW

BEGIN

 UPDATE Table_Record

 SET `Value` = NEW.`Value`

 WHERE `Name` = NEW.`Name`

 AND `Value` < NEW.`Value`;

END $$

DELIMITER;

IBM DB2 LUW
IBM DB2 for distributed systems known as DB2 for LUW (LUW means Linux Unix Windows) supports three
trigger types: Before trigger, After trigger and Instead of trigger. Both statement level and row level triggers are
supported. If there are more triggers for same operation on table then firing order is determined by trigger creation
data. Since version 9.7 IBM DB2 supports autonomous transactions [3].
Before trigger is for checking data and deciding if operation should be permitted. If exception is thrown from before
trigger then operation is aborted and no data are changed. In DB2 before triggers are read only — you can't modify
data in before triggers. After triggers are designed for post processing after requested change was performed. After
triggers can write data into tables and unlike someWikipedia:Avoid weasel words other databases you can write into
any table including table on which trigger operates. Instead of triggers are for making views writeable.
Triggers are usually programmed in SQL PL language.

http://www.ibm.com/developerworks/data/library/techarticle/dm-0907autonomoustransactions/index.html
http://en.wikipedia.org/wiki/Avoid_weasel_words
http://en.wikipedia.org/w/index.php?title=SQL_PL

Database trigger 129

SQLite
CREATE [TEMP | TEMPORARY] TRIGGER [IF NOT EXISTS] [database_name .]

trigger_name

[BEFORE | AFTER | INSTEAD OF] {DELETE | INSERT | UPDATE [OF column_name

 [, column_name]...]}

ON {table_name | view_name}

 [FOR EACH ROW] [WHEN condition]

BEGIN

 ...

END

SQLite only supports row-level triggers, not statement-level triggers.
Updateable views, which are not supported in SQLite, can be emulated with INSTEAD OF triggers.

XML databases
An example of implementation of triggers in non-relational database can be Sedna, that provides support for triggers
based on XQuery. Triggers in Sedna were designed to be analogous to SQL:2003 triggers, but natively base on XML
query and update languages (XPath, XQuery and XML update language).
A trigger in Sedna is set on any nodes of an XML document stored in database. When these nodes are updated, the
trigger automatically executes XQuery queries and updates specified in its body. For example, the following trigger
cancels person node deletion if there are any open auctions referenced by this person:

CREATE TRIGGER "trigger3"

 BEFORE DELETE

 ON doc("auction")/site//person

 FOR EACH NODE

 DO

 {

 if(exists($WHERE//open_auction/bidder/personref/@person=$OLD/@id))

 then ()

 else $OLD;

 }

References
[1] http:/ / msdn2. microsoft. com/ en-us/ library/ ms189871(SQL. 90). aspx
[2] http:/ / www. postgresql. org/ docs/ 9. 0/ static/ sql-createtrigger. html
[3] http:/ / www. ibm. com/ developerworks/ data/ library/ techarticle/ dm-0907autonomoustransactions/ index. html

External links
• Microsoft SQL Server DROP TRIGGER (http:/ / msdn2. microsoft. com/ en-us/ library/ aa258846(SQL. 80).

aspx)
• MySQL Database triggers (http:/ / dev. mysql. com/ doc/ refman/ 5. 0/ en/ triggers. html)
• MySQL DB Create Triggers (http:/ / dev. mysql. com/ doc/ refman/ 5. 0/ en/ create-trigger. html)
• DB2 CREATE TRIGGER statement (http:/ / publib. boulder. ibm. com/ infocenter/ db2luw/ v9/ topic/ com. ibm.

db2. udb. admin. doc/ doc/ r0000931. htm)
• Oracle CREATE TRIGGER (http:/ / download. oracle. com/ docs/ cd/ B19306_01/ server. 102/ b14200/

statements_7004. htm#sthref7885)

http://en.wikipedia.org/w/index.php?title=SQLite
http://en.wikipedia.org/w/index.php?title=Updateable_views
http://en.wikipedia.org/w/index.php?title=Sedna_%28database%29
http://en.wikipedia.org/w/index.php?title=XQuery
http://en.wikipedia.org/w/index.php?title=SQL:2003
http://en.wikipedia.org/w/index.php?title=XPath
http://en.wikipedia.org/w/index.php?title=XQuery
http://msdn2.microsoft.com/en-us/library/ms189871(SQL.90).aspx
http://www.postgresql.org/docs/9.0/static/sql-createtrigger.html
http://www.ibm.com/developerworks/data/library/techarticle/dm-0907autonomoustransactions/index.html
http://msdn2.microsoft.com/en-us/library/aa258846(SQL.80).aspx
http://msdn2.microsoft.com/en-us/library/aa258846(SQL.80).aspx
http://dev.mysql.com/doc/refman/5.0/en/triggers.html
http://dev.mysql.com/doc/refman/5.0/en/create-trigger.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9/topic/com.ibm.db2.udb.admin.doc/doc/r0000931.htm
http://publib.boulder.ibm.com/infocenter/db2luw/v9/topic/com.ibm.db2.udb.admin.doc/doc/r0000931.htm
http://download.oracle.com/docs/cd/B19306_01/server.102/b14200/statements_7004.htm#sthref7885
http://download.oracle.com/docs/cd/B19306_01/server.102/b14200/statements_7004.htm#sthref7885

Database trigger 130

• PostgreSQL CREATE TRIGGER (http:/ / www. postgresql. org/ docs/ 8. 2/ static/ sql-createtrigger. html)
• Oracle Mutating Table Problems with DELETE CASCADE (http:/ / www. akadia. com/ services/

ora_mutating_table_problems. html)
• SQLite Query Language: CREATE TRIGGER (http:/ / www. sqlite. org/ lang_createtrigger. html)

Database index
A database index is a data structure that improves the speed of data retrieval operations on a database table at the
cost of additional writes and the use of more storage space to maintain the extra copy of data. Indexes are used to
quickly locate data without having to search every row in a database table every time a database table is accessed.
Indexes can be created using one or more columns of a database table, providing the basis for both rapid random
lookups and efficient access of ordered records.
In a relational database, indexes are used to quickly and efficiently provide the exact location of the corresponding
data. An index is a copy of select columns of data from a table that can be searched very efficiently that also includes
a low level disk block address or direct link to the complete row of data it was copied from. Some databases extend
the power of indexing by allowing indices to be created on functions or expressions. For example, an index could be
created on upper(last_name), which would only store the upper case versions of the last_name field in the
index. Another option sometimes supported is the use of "filtered" indices, where index entries are created only for
those records that satisfy some conditional expression. A further aspect of flexibility is to permit indexing on
user-defined functions, as well as expressions formed from an assortment of built-in functions.

Usage

Support for fast lookup
Most database software includes indexing technology that enables sub-linear time lookup to improve performance,
as linear search is inefficient for large databases.
Suppose a database contains N data items and it is desired to retrieve one or two of them based on the value of one of
the fields. A naive implementation would retrieve and examine each item until a match was not found. A successful
lookup would retrieve half the objects on average; an unsuccessful lookup all of them for each attempt. This means
that the number of operations in the worst case is O(N) or linear time. Since databases commonly contain millions of
objects and since lookup is a common operation, it is often desirable to improve on this performance.
An index is any data structure that improves the performance of lookup. There are many different data structures
used for this purpose, and in fact a substantial proportion of the field of Computer Science is devoted to the design
and analysis of index data structures. [citation needed] There are complex design trade-offs involving lookup
performance, index size, and index update performance. Many index designs exhibit logarithmic (O(log(N))) lookup
performance and in some applications it is possible to achieve flat (O(1)) performance.

Policing the database constraints
Indices are used to police database constraints, such as UNIQUE, EXCLUSION, PRIMARY KEY and FOREIGN
KEY. An index may be declared as UNIQUE which creates an implicit constraint on the underlying table. Database
systems usually implicitly create an index on a set of columns declared PRIMARY KEY, and some are capable of
using an already existing index to police this constraint. Many database systems require that both referencing and
referenced sets of columns in a FOREIGN KEY constraint are indexed, thus improving performance of inserts,
updates and deletes to the tables participating in the constraint.

http://www.postgresql.org/docs/8.2/static/sql-createtrigger.html
http://www.akadia.com/services/ora_mutating_table_problems.html
http://www.akadia.com/services/ora_mutating_table_problems.html
http://www.sqlite.org/lang_createtrigger.html
http://en.wikipedia.org/w/index.php?title=Data_structure
http://en.wikipedia.org/w/index.php?title=Lookup
http://en.wikipedia.org/w/index.php?title=Expression_%28programming%29
http://en.wikipedia.org/w/index.php?title=User-defined_function
http://en.wikipedia.org/w/index.php?title=Sub-linear_time
http://en.wikipedia.org/w/index.php?title=Lookup
http://en.wikipedia.org/w/index.php?title=Linear_search
http://en.wikipedia.org/w/index.php?title=Big_O_notation
http://en.wikipedia.org/w/index.php?title=Linear_time
http://en.wikipedia.org/w/index.php?title=Category:Data_structures
http://en.wikipedia.org/wiki/Citation_needed
http://en.wikipedia.org/w/index.php?title=Big_O_notation
http://en.wikipedia.org/w/index.php?title=Big_O_notation
http://en.wikipedia.org/w/index.php?title=Database_constraints

Database index 131

Some database systems support EXCLUSION constraint which ensures that for a newly inserted or updated record a
certain predicate would hold for no other record. This may be used to implement a UNIQUE constraint (with
equality predicate) or more complex constraints, like ensuring that no overlapping time ranges or no intersecting
geometry objects would be stored in the table. An index supporting fast searching for records satisfying the predicate
is required to police such a constraint.[1]

Index architecture

Non-clustered
The data is present in arbitrary order, but the logical ordering is specified by the index. The data rows may be
spread throughout the table regardless of the value of the indexed column or expression. The non-clustered index
tree contains the index keys in sorted order, with the leaf level of the index containing the pointer to the record (page
and the row number in the data page in page-organized engines; row offset in file-organized engines).
In a non-clustered index:
•• The physical order of the rows is not the same as the index order.
•• Typically created on non-primary key columns used in JOIN, WHERE, and ORDER BY clauses.
There can be more than one non-clustered index on a database table.

Clustered
Clustering alters the data block into a certain distinct order to match the index, resulting in the row data being stored
in order. Therefore, only one clustered index can be created on a given database table. Clustered indices can greatly
increase overall speed of retrieval, but usually only where the data is accessed sequentially in the same or reverse
order of the clustered index, or when a range of items is selected.
Since the physical records are in this sort order on disk, the next row item in the sequence is immediately before or
after the last one, and so fewer data block reads are required. The primary feature of a clustered index is therefore the
ordering of the physical data rows in accordance with the index blocks that point to them. Some databases separate
the data and index blocks into separate files, others put two completely different data blocks within the same
physical file(s).

Cluster
When multiple databases and multiple tables are joined, it's referred to as a cluster (not to be confused with clustered
index described above). The records for the tables sharing the value of a cluster key shall be stored together in the
same or nearby data blocks. This may improve the joins of these tables on the cluster key, since the matching records
are stored together and less I/O is required to locate them.[2] The data layout in the tables which are parts of the
cluster is defined by the cluster configuration. A cluster can be keyed with a B-Tree index or a hash table. The data
block in which the table record will be stored is defined by the value of the cluster key.

http://en.wikipedia.org/w/index.php?title=B-Tree
http://en.wikipedia.org/w/index.php?title=Hash_table

Database index 132

Column order
The order in which columns are listed in the index definition is important. It is possible to retrieve a set of row
identifiers using only the first indexed column. However, it is not possible or efficient (on most databases) to retrieve
the set of row identifiers using only the second or greater indexed column.
For example, imagine a phone book that is organized by city first, then by last name, and then by first name. If you
are given the city, you can easily extract the list of all phone numbers for that city. However, in this phone book it
would be very tedious to find all the phone numbers for a given last name. You would have to look within each city's
section for the entries with that last name. Some databases can do this, others just won’t use the index.

Applications and limitations
Indices are useful for many applications but come with some limitations. Consider the following SQL statement:
SELECT first_name FROM people WHERE last_name = 'Smith';. To process this statement
without an index the database software must look at the last_name column on every row in the table (this is known
as a full table scan). With an index the database simply follows the B-tree data structure until the Smith entry has
been found; this is much less computationally expensive than a full table scan.
Consider this SQL statement: SELECT email_address FROM customers WHERE email_address
LIKE '%@yahoo.com';. This query would yield an email address for every customer whose email address ends
with "@yahoo.com", but even if the email_address column has been indexed the database must perform a full index
scan. This is because the index is built with the assumption that words go from left to right. With a wildcard at the
beginning of the search-term, the database software is unable to use the underlying B-tree data structure (in other
words, the WHERE-clause is not sargable). This problem can be solved through the addition of another index
created on reverse(email_address) and a SQL query like this: SELECT email_address FROM
customers WHERE reverse(email_address) LIKE reverse('%@yahoo.com');. This puts the
wild-card at the right-most part of the query (now moc.oohay@%) which the index on reverse(email_address) can
satisfy.

Types of indexes

Bitmap index
A bitmap index is a special kind of index that stores the bulk of its data as bit arrays (bitmaps) and answers most
queries by performing bitwise logical operations on these bitmaps. The most commonly used indexes, such as
B+trees, are most efficient if the values they index do not repeat or repeat a smaller number of times. In contrast, the
bitmap index is designed for cases where the values of a variable repeat very frequently. For example, the gender
field in a customer database usually contains two distinct values: male or female. For such variables, the bitmap
index can have a significant performance advantage over the commonly used trees.

http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=Full_table_scan
http://en.wikipedia.org/w/index.php?title=B-tree
http://en.wikipedia.org/w/index.php?title=Wildcard_character
http://en.wikipedia.org/w/index.php?title=Sargable
http://en.wikipedia.org/w/index.php?title=Bit_array
http://en.wikipedia.org/w/index.php?title=Bitwise_operation
http://en.wikipedia.org/w/index.php?title=B%2Btree

Database index 133

Dense index
A dense index in databases is a file with pairs of keys and pointers for every record in the data file. Every key in this
file is associated with a particular pointer to a record in the sorted data file. In clustered indices with duplicate keys,
the dense index points to the first record with that key.[3]

Sparse index
A sparse index in databases is a file with pairs of keys and pointers for every block in the data file. Every key in this
file is associated with a particular pointer to the block in the sorted data file. In clustered indices with duplicate keys,
the sparse index points to the lowest search key in each block.

Reverse index
A reverse key index reverses the key value before entering it in the index. E.g., the value 24538 becomes 83542 in
the index. Reversing the key value is particularly useful for indexing data such as sequence numbers, where new key
values monotonically increase.

Index implementations
Indices can be implemented using a variety of data structures. Popular indices include balanced trees, B+ trees and
hashes.
In Microsoft SQL Server, the leaf node of the clustered index corresponds to the actual data, not simply a pointer to
data that resides elsewhere, as is the case with a non-clustered index. Each relation can have a single clustered index
and many unclustered indices.

Index concurrency control
An index is typically being accessed concurrently by several transactions and processes, and thus needs concurrency
control. While in principle indexes can utilize the common database concurrency control methods, specialized
concurrency control methods for indexes exist, which are applied in conjunction with the common methods for a
substantial performance gain.

Covering index
In most cases, an index is used to quickly locate the data record(s) from which the required data is read. In other
words, the index is only used to locate data records in the table and not to return data.
A covering index is a special case where the index itself contains the required data field(s) and can return the data.
Consider the following table (other fields omitted):

http://en.wikipedia.org/w/index.php?title=Computer_file
http://en.wikipedia.org/w/index.php?title=Pointer_%28computer_programming%29
http://en.wikipedia.org/w/index.php?title=Record_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Block_%28data_storage%29
http://en.wikipedia.org/w/index.php?title=Balanced_tree
http://en.wikipedia.org/w/index.php?title=B%2B_tree
http://en.wikipedia.org/w/index.php?title=Hash_table
http://en.wikipedia.org/w/index.php?title=Microsoft_SQL_Server
http://en.wikipedia.org/w/index.php?title=Leaf_node

Database index 134

ID Name Other Fields

12 Plug ...

13 Lamp ...

14 Fuse ...

To find the Name for ID 13, an index on (ID) will be useful, but the record must still be read to get the Name.
However, an index on (ID, Name) contains the required data field and eliminates the need to look up the record.
A covering index can dramatically speed up data retrieval but may itself be large due to the additional keys, which
slow down data insertion & update. To reduce such index size, some systems allow non-key fields to be included in
the index. Non-key fields are not themselves part of the index ordering but only included at the leaf level, allowing
for a covering index with less overall index size.

Standardization
There is no standard about creating indexes because the ISO SQL Standard does not cover physical aspects. Indexes
are one of the physical parts of database conception among others like storage (tablespace or filegroups). RDBMS
vendors all give a CREATE INDEX syntax with some specific options which depends on functionalities they
provide to customers.

References
[1] PostgreSQL 9.1.2 Documentation: CREATE TABLE (http:/ / www. postgresql. org/ docs/ 9. 1/ static/ sql-createtable. html)
[2] Overview of Clusters (http:/ / download. oracle. com/ docs/ cd/ B12037_01/ server. 101/ b10743/ schema. htm#sthref1069) Oracle® Database

Concepts 10g Release 1 (10.1)
[3] Database Systems: The Complete Book. Hector Garcia-Molina, Jeffrey D. Ullman, Jennifer D. Widom

http://www.postgresql.org/docs/9.1/static/sql-createtable.html
http://download.oracle.com/docs/cd/B12037_01/server.101/b10743/schema.htm#sthref1069
http://en.wikipedia.org/w/index.php?title=Hector_Garcia-Molina
http://en.wikipedia.org/w/index.php?title=Jeffrey_Ullman
http://en.wikipedia.org/w/index.php?title=Jennifer_Widom

Stored procedure 135

Stored procedure
A stored procedure is a subroutine available to applications that access a relational database system. A stored
procedure (sometimes called a proc, sproc, StoPro, StoredProc, sp or SP) is actually stored in the database data
dictionary.
Typical use for stored procedures include data validation (integrated into the database) or access control
mechanisms. Furthermore, stored procedures can consolidate and centralize logic that was originally implemented in
applications. Extensive or complex processing that requires execution of several SQL statements is moved into
stored procedures, and all applications call the procedures. One can use nested stored procedures by executing one
stored procedure from within another.
Stored procedures are similar to user-defined functions (UDFs). The major difference is that UDFs can be used like
any other expression within SQL statements, whereas stored procedures must be invoked using the CALL
statement.[1]

CALL procedure(...)

or

EXECUTE procedure(...)

Stored procedures may return result sets, i.e. the results of a SELECT statement. Such result sets can be processed
using cursors, by other stored procedures, by associating a result set locator, or by applications. Stored procedures
may also contain declared variables for processing data and cursors that allow it to loop through multiple rows in a
table. Stored procedure flow control statements typically include IF, WHILE, LOOP, REPEAT, and CASE
statements, and more. Stored procedures can receive variables, return results or modify variables and return them,
depending on how and where the variable is declared.

Implementation
The exact and correct implementation of stored procedures varies from one database system to another. Most major
database vendors support them in some form. Depending on the database system, stored procedures can be
implemented in a variety of programming languages, for example SQL, Java, C, or C++. Stored procedures written
in non-SQL programming languages may or may not execute SQL statements themselves.
The increasing adoption of stored procedures led to the introduction of procedural elements to the SQL language in
the SQL:1999 and SQL:2003 standards in the part SQL/PSM. That made SQL an imperative programming language.
Most database systems offer proprietary and vendor-specific extensions, exceeding SQL/PSM. A standard
specification for Java stored procedures exists as well as SQL/JRT.

http://en.wikipedia.org/w/index.php?title=Subroutine
http://en.wikipedia.org/w/index.php?title=Database_management_system
http://en.wikipedia.org/w/index.php?title=Data_validation
http://en.wikipedia.org/w/index.php?title=Access_control
http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=User_defined_function
http://en.wikipedia.org/w/index.php?title=Result_set
http://en.wikipedia.org/w/index.php?title=Programming_language
http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=C_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=C%2B%2B_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=SQL:1999
http://en.wikipedia.org/w/index.php?title=SQL:2003
http://en.wikipedia.org/w/index.php?title=Imperative_programming_language
http://en.wikipedia.org/w/index.php?title=Java_stored_procedure
http://en.wikipedia.org/w/index.php?title=SQL/JRT

Stored procedure 136

Database system Implementation language

CUBRID Java

DB2 SQL PL (close to the SQL/PSM standard) or Java

Firebird PSQL (Fyracle also supports portions of Oracle's PL/SQL)

Informix SPL or Java

Microsoft SQL Server Transact-SQL and various .NET Framework languages

MySQL own stored procedures, closely adhering to SQL/PSM standard.

Oracle PL/SQL or Java

PostgreSQL PL/pgSQL, can also use own function languages such as pl/perl or pl/php

Sybase ASE Transact-SQL

Other uses
In some systems, stored procedures can be used to control transaction management; in others, stored procedures run
inside a transaction such that transactions are effectively transparent to them. Stored procedures can also be invoked
from a database trigger or a condition handler. For example, a stored procedure may be triggered by an insert on a
specific table, or update of a specific field in a table, and the code inside the stored procedure would be executed.
Writing stored procedures as condition handlers also allows database administrators to track errors in the system
with greater detail by using stored procedures to catch the errors and record some audit information in the database
or an external resource like a file.

Comparison with dynamic SQL
Overhead: Because stored procedure statements are stored directly in the database, they may remove all or part of
the compilation overhead that is typically required in situations where software applications send inline (dynamic)
SQL queries to a database. (However, most database systems implement "statement caches" and other mechanisms
to avoid repetitive compilation of dynamic SQL statements.) In addition, while they avoid some overhead,
pre-compiled SQL statements add to the complexity of creating an optimal execution plan because not all arguments
of the SQL statement are supplied at compile time. Depending on the specific database implementation and
configuration, mixed performance results will be seen from stored procedures versus generic queries or user defined
functions.
Avoidance of network traffic: A major advantage with stored procedures is that they can run directly within the
database engine. In a production system, this typically means that the procedures run entirely on a specialized
database server, which has direct access to the data being accessed. The benefit here is that network communication
costs can be avoided completely. This becomes particularly important for complex series of SQL statements.
Encapsulation of business logic: Stored procedures allow programmers to embed business logic as an API in the
database, which can simplify data management and reduce the need to encode the logic elsewhere in client programs.
This can result in a lesser likelihood of data corruption by faulty client programs. The database system can ensure
data integrity and consistency with the help of stored procedures.
Delegation of access-rights: In many systems, stored procedures can be granted access rights to the database that
users who execute those procedures do not directly have.
Some protection from SQL injection attacks: Stored procedures can be used to protect against injection attacks.
Stored procedure parameters will be treated as data even if an attacker inserts SQL commands. Also, some DBMSs
will check the parameter's type. A stored procedure that in turn generates dynamic SQL using the input is however

http://en.wikipedia.org/w/index.php?title=CUBRID
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=IBM_DB2
http://en.wikipedia.org/w/index.php?title=SQL_PL
http://en.wikipedia.org/w/index.php?title=SQL/PSM
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Firebird_%28database_server%29
http://en.wikipedia.org/w/index.php?title=Informix
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Microsoft_SQL_Server
http://en.wikipedia.org/w/index.php?title=Transact-SQL
http://en.wikipedia.org/w/index.php?title=.NET_Framework
http://en.wikipedia.org/w/index.php?title=MySQL
http://en.wikipedia.org/w/index.php?title=SQL/PSM
http://en.wikipedia.org/w/index.php?title=Oracle_database
http://en.wikipedia.org/w/index.php?title=PL/SQL
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=PostgreSQL
http://en.wikipedia.org/w/index.php?title=PL/pgSQL
http://en.wikipedia.org/w/index.php?title=Adaptive_Server_Enterprise
http://en.wikipedia.org/w/index.php?title=Transact-SQL
http://en.wikipedia.org/w/index.php?title=Database_engine
http://en.wikipedia.org/w/index.php?title=Business_logic
http://en.wikipedia.org/w/index.php?title=Data_integrity
http://en.wikipedia.org/w/index.php?title=Data_consistency

Stored procedure 137

still vulnerable to SQL injections unless proper precautions are taken.

Comparison with functions
•• A function is a subprogram written to perform certain computations
•• A scalar function returns only a single value (or NULL), whereas a table function returns a (relational) table

comprising zero or more rows, each row with one or more columns.
• Functions must return a value (using the RETURN keyword), but for stored procedures this is not compulsory.
• Stored procedures can use RETURN keyword but without any value being passed.
• Functions could be used in SELECT statements, provided they don’t do any data manipulation. However,

procedures cannot be included in SELECT statements.
• A stored procedure can return multiple values using the OUT parameter or return no value at all.
•• A stored procedure can save the query compilation time.

Comparison with prepared statements
Prepared statements take an ordinary statement or query and parameterize it so that different literal values can be
used at a later time. Like stored procedures, they are stored on the server for efficiency and provide some protection
from SQL injection attacks. Although simpler and more declarative, prepared statements are not ordinarily written to
use procedural logic and cannot operate on variables. Because of their simple interface and client-side
implementations, prepared statements are more widely reusable between DBMSs.

Disadvantages
• Stored procedure languages are quite often vendor-specific. Switching to another vendor's database most likely

requires rewriting any existing stored procedures.
•• Stored procedure languages from different vendors have different levels of sophistication.

• For example, Oracle's PL/SQL has more language features and built-in features (via packages such as DBMS_
and UTL_ and others) than Microsoft's T-SQL.[citation needed]

•• Tool support for writing and debugging stored procedures is often not as good as for other programming
languages, but this differs between vendors and languages.
•• For example, both PL/SQL and T-SQL have dedicated IDEs and debuggers. PL/PgSQL can be debugged from

various IDEs.

References
[1] Call Procedure (http:/ / publib. boulder. ibm. com/ infocenter/ iseries/ v5r3/ index. jsp?topic=/ db2/ rbafzmstcallstmt. htm)

External links
• Stored Procedures in MySQL FAQ (http:/ / dev. mysql. com/ doc/ refman/ 5. 7/ en/ faqs-stored-procs. html)
• An overview of PostgreSQL Procedural Language support (http:/ / www. postgresql. org/ docs/ current/

interactive/ xplang. html)
• Using a stored procedure in Sybase ASE (http:/ / www. petersap. nl/ SybaseWiki/ index. php/ Stored_procedure)
• PL/SQL Procedures (http:/ / infolab. stanford. edu/ ~ullman/ fcdb/ oracle/ or-plsql. html#procedures)
• Oracle Database PL/SQL Language Reference (http:/ / download. oracle. com/ docs/ cd/ B28359_01/ appdev.

111/ b28370/ toc. htm)

http://en.wikipedia.org/w/index.php?title=Prepared_statement
http://en.wikipedia.org/wiki/Citation_needed
http://publib.boulder.ibm.com/infocenter/iseries/v5r3/index.jsp?topic=/db2/rbafzmstcallstmt.htm
http://dev.mysql.com/doc/refman/5.7/en/faqs-stored-procs.html
http://www.postgresql.org/docs/current/interactive/xplang.html
http://www.postgresql.org/docs/current/interactive/xplang.html
http://www.petersap.nl/SybaseWiki/index.php/Stored_procedure
http://infolab.stanford.edu/~ullman/fcdb/oracle/or-plsql.html#procedures
http://download.oracle.com/docs/cd/B28359_01/appdev.111/b28370/toc.htm
http://download.oracle.com/docs/cd/B28359_01/appdev.111/b28370/toc.htm

Cursor (databases) 138

Cursor (databases)
In computer science, a database cursor is a control structure that enables traversal over the records in a database.
Cursors facilitate subsequent processing in conjunction with the traversal, such as retrieval, addition and removal of
database records. The database cursor characteristic of traversal makes cursors akin to the programming language
concept of iterator.
Cursors are used by database programmers to process individual rows returned by database system queries. Cursors
enable manipulation of whole result sets at once. In this scenario, a cursor enables the rows in a result set to be
processed sequentially.
In SQL procedures, a cursor makes it possible to define a result set (a set of data rows) and perform complex logic
on a row by row basis. By using the same mechanics, a SQL procedure can also define a result set and return it
directly to the caller of the SQL procedure or to a client application.
A cursor can be viewed as a pointer to one row in a set of rows. The cursor can only reference one row at a time, but
can move to other rows of the result set as needed.

Usage
To use cursors in SQL procedures, you need to do the following:
1.1. Declare a cursor that defines a result set.
2.2. Open the cursor to establish the result set.
3.3. Fetch the data into local variables as needed from the cursor, one row at a time.
4.4. Close the cursor when done.
To work with cursors you must use the following SQL statements
This section introduces the ways the SQL:2003 standard defines how to use cursors in applications in embedded
SQL. Not all application bindings for relational database systems adhere to that standard, and some (such as CLI or
JDBC) use a different interface.
A programmer makes a cursor known to the DBMS by using a DECLARE ... CURSOR statement and assigning the
cursor a (compulsory) name:

 DECLARE cursor_name CURSOR FOR SELECT ... FROM ...

Before code can access the data, it must open the cursor with the OPEN statement. Directly following a successful
opening, the cursor is positioned before the first row in the result set.

 OPEN cursor_name

Programs position cursors on a specific row in the result set with the FETCH statement. A fetch operation transfers
the data of the row into the application.

FETCH cursor_name INTO ...

Once an application has processed all available rows or the fetch operation is to be positioned on a non-existing row
(compare scrollable cursors below), the DBMS returns a SQLSTATE '02000' (usually accompanied by an
SQLCODE +100) to indicate the end of the result set.
The final step involves closing the cursor using the CLOSE statement:

 CLOSE cursor_name

After closing a cursor, a program can open it again, which implies that the DBMS re-evaluates the same query or a
different query and builds a new result set.

http://en.wiktionary.org/wiki/traverse
http://en.wikipedia.org/w/index.php?title=Database_record
http://en.wikipedia.org/w/index.php?title=Iterator
http://en.wikipedia.org/w/index.php?title=Database_system
http://en.wikipedia.org/w/index.php?title=Result_set
http://en.wikipedia.org/w/index.php?title=SQL:2003
http://en.wikipedia.org/w/index.php?title=Call_Level_Interface
http://en.wikipedia.org/w/index.php?title=Database_management_system
http://en.wikibooks.org/wiki/Structured_Query_Language/Return_Codes

Cursor (databases) 139

Scrollable cursors
Programmers may declare cursors as scrollable or not scrollable. The scrollability indicates the direction in which a
cursor can move.
With a non-scrollable (or forward-only) cursor, you can FETCH each row at most once, and the cursor
automatically moves to the next row. After you fetch the last row, if you fetch again, you will put the cursor after the
last row and get the following code: SQLSTATE 02000 (SQLCODE +100).
A program may position a scrollable cursor anywhere in the result set using the FETCH SQL statement. The
keyword SCROLL must be specified when declaring the cursor. The default is NO SCROLL, although different
language bindings like JDBC may apply a different default.

 DECLARE cursor_name sensitivity SCROLL CURSOR FOR SELECT ... FROM ...

The target position for a scrollable cursor can be specified relatively (from the current cursor position) or absolutely
(from the beginning of the result set).

 FETCH [NEXT | PRIOR | FIRST | LAST] FROM cursor_name

 FETCH ABSOLUTE n FROM cursor_name

 FETCH RELATIVE n FROM cursor_name

Scrollable cursors can potentially access the same row in the result set multiple times. Thus, data modifications
(insert, update, delete operations) from other transactions could have an impact on the result set. A cursor can be
SENSITIVE or INSENSITIVE to such data modifications. A sensitive cursor picks up data modifications impacting
the result set of the cursor, and an insensitive cursor does not. Additionally, a cursor may be ASENSITIVE, in which
case the DBMS tries to apply sensitivity as much as possible.

"WITH HOLD"
Cursors are usually closed automatically at the end of a transaction, i.e. when a COMMIT or ROLLBACK (or an
implicit termination of the transaction) occurs. That behavior can be changed if the cursor is declared using the
WITH HOLD clause. (The default is WITHOUT HOLD.) A holdable cursor is kept open over COMMIT and closed
upon ROLLBACK. (Some DBMS deviate from this standard behavior and also keep holdable cursors open over
ROLLBACK.)

 DECLARE cursor_name CURSOR WITH HOLD FOR SELECT ... FROM ...

When a COMMIT occurs, a holdable cursor is positioned before the next row. Thus, a positioned UPDATE or
positioned DELETE statement will only succeed after a FETCH operation occurred first in the transaction.
Note that JDBC defines cursors as holdable per default. This is done because JDBC also activates auto-commit per
default. Due to the usual overhead associated with auto-commit and holdable cursors, both features should be
explicitly deactivated at the connection level.

Cursor (databases) 140

Positioned update/delete statements
Cursors can not only be used to fetch data from the DBMS into an application but also to identify a row in a table to
be updated or deleted. The SQL:2003 standard defines positioned update and positioned delete SQL statements for
that purpose. Such statements do not use a regular WHERE clause with predicates. Instead, a cursor identifies the
row. The cursor must be opened and already positioned on a row by means of FETCH statement.

 UPDATE table_name

 SET ...

 WHERE CURRENT OF cursor_name

 DELETE

 FROM table_name

 WHERE CURRENT OF cursor_name

The cursor must operate on an updatable result set in order to successfully execute a positioned update or delete
statement. Otherwise, the DBMS would not know how to apply the data changes to the underlying tables referred to
in the cursor.

Cursors in distributed transactions
Using cursors in distributed transactions (X/Open XA Environments), which are controlled using a transaction
monitor, is no different than cursors in non-distributed transactions.
One has to pay attention when using holdable cursors, however. Connections can be used by different applications.
Thus, once a transaction has been ended and committed, a subsequent transaction (running in a different application)
could inherit existing holdable cursors. Therefore, an application developer has to be aware of that situation.

Cursors in XQuery
The XQuery language allows cursors to be created using the subsequence() function.
The format is:

let $displayed-sequence := subsequence($result, $start, $item-count)

Where $result is the result of the initial XQuery, $start is the item number to start and $item-count is the number of
items to return.
Equivalently this can also be done using a predicate:

let $displayed-sequence := $result[$start to $end]

Where $end is the end sequence.
For complete examples see the XQuery Wikibook [1].

http://en.wikipedia.org/w/index.php?title=X/Open_XA
http://en.wikipedia.org/w/index.php?title=XQuery
http://en.wikibooks.org/wiki/XQuery/Searching,Paging_and_Sorting#Paging

Cursor (databases) 141

Disadvantages of cursors
The following information may vary depending on the specific database system.
Fetching a row from the cursor may result in a network round trip each time. This uses much more network
bandwidth than would ordinarily be needed for the execution of a single SQL statement like DELETE. Repeated
network round trips can severely impact the speed of the operation using the cursor. Some DBMSs try to reduce this
impact by using block fetch. Block fetch implies that multiple rows are sent together from the server to the client.
The client stores a whole block of rows in a local buffer and retrieves the rows from there until that buffer is
exhausted.
Cursors allocate resources on the server, for instance locks, packages, processes, temporary storage, etc. For
example, Microsoft SQL Server implements cursors by creating a temporary table and populating it with the query's
result set. If a cursor is not properly closed (deallocated), the resources will not be freed until the SQL session
(connection) itself is closed. This wasting of resources on the server can not only lead to performance degradations
but also to failures.

Example
EMPLOYEES TABLE

SQL> desc EMPLOYEES_DETAILS;

 Name Null? Type

 --- -------- --------------------

 EMPLOYEE_ID NOT NULL NUMBER(6)

 FIRST_NAME VARCHAR2(20)

 LAST_NAME NOT NULL VARCHAR2(25)

 EMAIL NOT NULL VARCHAR2(30)

 PHONE_NUMBER VARCHAR2(20)

 HIRE_DATE NOT NULL DATE

 JOB_ID NOT NULL VARCHAR2(10)

 SALARY NUMBER(8,2)

 COMMISSION_PCT NUMBER(2,2)

 MANAGER_ID NUMBER(6)

 DEPARTMENT_ID NUMBER(4)

SAMPLE CURSOR KNOWN AS EE

CREATE OR REPLACE

PROCEDURE EE AS

BEGIN

 DECLARE

v_employeeID EMPLOYEES_DETAILS.EMPLOYEE_ID%TYPE;

v_FirstName EMPLOYEES_DETAILS.FIRST_NAME%TYPE;

v_LASTName EMPLOYEES_DETAILS.LAST_NAME%TYPE;

v_JOB_ID EMPLOYEES_DETAILS.JOB_ID%TYPE:= 'IT_PROG';

Cursor c_EMPLOYEES_DETAILS IS

SELECT EMPLOYEE_ID, FIRST_NAME, LAST_NAME

http://en.wikipedia.org/w/index.php?title=Round-trip_delay_time
http://en.wikipedia.org/w/index.php?title=Lock_%28database%29
http://en.wikipedia.org/w/index.php?title=Microsoft_SQL_Server

Cursor (databases) 142

FROM EMPLOYEES_DETAILS

WHERE JOB_ID ='v_JOB_ID';

BEGIN

OPEN c_EMPLOYEES_DETAILS;

LOOP

FETCH c_EMPLOYEES_DETAILS INTO v_employeeID,v_FirstName,v_LASTName;

DBMS_OUTPUT.put_line(v_employeeID);

DBMS_OUTPUT.put_line(v_FirstName);

DBMS_OUTPUT.put_line(v_LASTName);

EXIT WHEN c_EMPLOYEES_DETAILS%NOTFOUND;

END LOOP;

CLOSE c_EMPLOYEES_DETAILS;

END;

END;

References
• Christopher J. Date: Database in Depth, O'Reilly & Associates, ISBN 0-596-10012-4
• Thomas M. Connolly, Carolyn E. Begg: Database Systems, Addison-Wesley, ISBN 0-321-21025-5
• Ramiz Elmasri, Shamkant B. Navathe: Fundamentals of Database Systems, Addison-Wesley, ISBN

0-201-54263-3
• Neil Matthew, Richard Stones: Beginning Databases with PostgreSQL: From Novice to Professional, Apress,

ISBN 1-59059-478-9
• Thomas Kyte: Expert One-On-One: Oracle, Apress, ISBN 1-59059-525-4
• Kevin Loney: Oracle Database 10g: The Complete Reference, Oracle Press, ISBN 0-07-225351-7

External links
• Cursor Optimization Tips (for MS SQL Server) [2]

• Descriptions from Portland Pattern Repository [3]

• PostgreSQL Documentation [4]

• Berkeley DB Reference Guide: Cursor operations [5]

• Java SE 7 [6]

• Q3SqlCursor Class Reference [7]

• OCI Scrollable Cursor [8]

• function oci_new_cursor [9]

• MySQL's Cursor Documentation [10]

• FirebirdSQL cursors documentation [11]

• Cursors in DB2 CLI applications [12]; Cursors in DB2 SQL stored procedures [13]

• A Simple Example of a MySQL Stored Procedure that uses a cursor [14]

• MariaDB/MySQL Cursors: a brief Tutorial [15]

http://en.wikipedia.org/w/index.php?title=Christopher_J._Date
http://en.wikipedia.org/w/index.php?title=Thomas_M._Connolly
http://en.wikipedia.org/w/index.php?title=Carolyn_E._Begg
http://en.wikipedia.org/w/index.php?title=Ramiz_Elmasri
http://en.wikipedia.org/w/index.php?title=Shamkant_B._Navathe
http://en.wikipedia.org/w/index.php?title=Neil_Matthew
http://en.wikipedia.org/w/index.php?title=Richard_Stones
http://en.wikipedia.org/w/index.php?title=Thomas_Kyte
http://en.wikipedia.org/w/index.php?title=Kevin_Loney
http://www.mssqlcity.com/Tips/tipCursor.htm
http://c2.com/cgi/wiki?DistributedCursor
http://www.postgresql.org/docs/8.3/interactive/plpgsql-cursors.html
http://sleepycat.com/docs/ref/am/cursor.html
http://download.oracle.com/javase/7/docs/
http://doc.trolltech.com/4.0/q3sqlcursor.html
http://www.oracle.com/technology/products/oracle9i/daily/mar15.html
http://de2.php.net/manual/en/function.oci-new-cursor.php
http://dev.mysql.com/doc/refman/5.5/en/cursors.html
http://www.firebirdsql.org/refdocs/langrefupd20-psql-declare.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9/topic/com.ibm.db2.udb.apdv.cli.doc/doc/c0007645.htm
http://publib.boulder.ibm.com/infocenter/db2luw/v9/topic/com.ibm.db2.udb.apdv.sql.doc/doc/c0024361.htm
http://www.kbedell.com/2009/03/02/a-simple-example-of-a-mysql-stored-procedure-that-uses-a-cursor/
http://falseisnotnull.wordpress.com/2013/06/05/mariadbmysql-cursors-a-brief-tutorial/

Cursor (databases) 143

References
[1] http:/ / en. wikibooks. org/ wiki/ XQuery/ Searching,Paging_and_Sorting#Paging
[2] http:/ / www. mssqlcity. com/ Tips/ tipCursor. htm
[3] http:/ / c2. com/ cgi/ wiki?DistributedCursor
[4] http:/ / www. postgresql. org/ docs/ 8. 3/ interactive/ plpgsql-cursors. html
[5] http:/ / sleepycat. com/ docs/ ref/ am/ cursor. html
[6] http:/ / download. oracle. com/ javase/ 7/ docs/
[7] http:/ / doc. trolltech. com/ 4. 0/ q3sqlcursor. html
[8] http:/ / www. oracle. com/ technology/ products/ oracle9i/ daily/ mar15. html
[9] http:/ / de2. php. net/ manual/ en/ function. oci-new-cursor. php
[10] http:/ / dev. mysql. com/ doc/ refman/ 5. 5/ en/ cursors. html
[11] http:/ / www. firebirdsql. org/ refdocs/ langrefupd20-psql-declare. html
[12] http:/ / publib. boulder. ibm. com/ infocenter/ db2luw/ v9/ topic/ com. ibm. db2. udb. apdv. cli. doc/ doc/ c0007645. htm
[13] http:/ / publib. boulder. ibm. com/ infocenter/ db2luw/ v9/ topic/ com. ibm. db2. udb. apdv. sql. doc/ doc/ c0024361. htm
[14] http:/ / www. kbedell. com/ 2009/ 03/ 02/ a-simple-example-of-a-mysql-stored-procedure-that-uses-a-cursor/
[15] http:/ / falseisnotnull. wordpress. com/ 2013/ 06/ 05/ mariadbmysql-cursors-a-brief-tutorial/

Partition (database)
A partition is a division of a logical database or its constituting elements into distinct independent parts. Database
partitioning is normally done for manageability, performance or availability reasons.

Benefits of multiple partitions
A popular and favourable application of partitioning is in a distributed database management system. Each partition
may be spread over multiple nodes, and users at the node can perform local transactions on the partition. This
increases performance for sites that have regular transactions involving certain views of data, whilst maintaining
availability and security.

Partitioning criteria
Current high end relational database management systems provide for different criteria to split the database. They
take a partitioning key and assign a partition based on certain criteria. Common criteria are:
Range partitioning

Selects a partition by determining if the partitioning key is inside a certain range. An example could be a
partition for all rows where the column zipcode has a value between 70000 and 79999.

List partitioning
A partition is assigned a list of values. If the partitioning key has one of these values, the partition is chosen.
For example all rows where the column Country is either Iceland, Norway, Sweden, Finland or
Denmark could build a partition for the Nordic countries.

Hash partitioning
The value of a hash function determines membership in a partition. Assuming there are four partitions, the
hash function could return a value from 0 to 3.

Composite partitioning allows for certain combinations of the above partitioning schemes, by for example first
applying a range partitioning and then a hash partitioning. Consistent hashing could be considered a composite of
hash and list partitioning where the hash reduces the key space to a size that can be listed.

http://en.wikibooks.org/wiki/XQuery/Searching,Paging_and_Sorting#Paging
http://www.mssqlcity.com/Tips/tipCursor.htm
http://c2.com/cgi/wiki?DistributedCursor
http://www.postgresql.org/docs/8.3/interactive/plpgsql-cursors.html
http://sleepycat.com/docs/ref/am/cursor.html
http://download.oracle.com/javase/7/docs/
http://doc.trolltech.com/4.0/q3sqlcursor.html
http://www.oracle.com/technology/products/oracle9i/daily/mar15.html
http://de2.php.net/manual/en/function.oci-new-cursor.php
http://dev.mysql.com/doc/refman/5.5/en/cursors.html
http://www.firebirdsql.org/refdocs/langrefupd20-psql-declare.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9/topic/com.ibm.db2.udb.apdv.cli.doc/doc/c0007645.htm
http://publib.boulder.ibm.com/infocenter/db2luw/v9/topic/com.ibm.db2.udb.apdv.sql.doc/doc/c0024361.htm
http://www.kbedell.com/2009/03/02/a-simple-example-of-a-mysql-stored-procedure-that-uses-a-cursor/
http://falseisnotnull.wordpress.com/2013/06/05/mariadbmysql-cursors-a-brief-tutorial/
http://en.wikipedia.org/w/index.php?title=Optimization_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Availability
http://en.wikipedia.org/w/index.php?title=Distributed_database_management_system
http://en.wikipedia.org/w/index.php?title=Nordic_countries
http://en.wikipedia.org/w/index.php?title=Hash_function
http://en.wikipedia.org/w/index.php?title=Consistent_hashing

Partition (database) 144

Partitioning methods
The partitioning can be done by either building separate smaller databases (each with its own tables, indices, and
transaction logs), or by splitting selected elements, for example just one table.
Horizontal partitioning (also see shard) involves putting different rows into different tables. Perhaps customers
with ZIP codes less than 50000 are stored in CustomersEast, while customers with ZIP codes greater than or equal to
50000 are stored in CustomersWest. The two partition tables are then CustomersEast and CustomersWest, while a
view with a union might be created over both of them to provide a complete view of all customers.
Vertical partitioning involves creating tables with fewer columns and using additional tables to store the remaining
columns.[1] Normalization also involves this splitting of columns across tables, but vertical partitioning goes beyond
that and partitions columns even when already normalized. Different physical storage might be used to realize
vertical partitioning as well; storing infrequently used or very wide columns on a different device, for example, is a
method of vertical partitioning. Done explicitly or implicitly, this type of partitioning is called "row splitting" (the
row is split by its columns). A common form of vertical partitioning is to split dynamic data (slow to find) from
static data (fast to find) in a table where the dynamic data is not used as often as the static. Creating a view across the
two newly created tables restores the original table with a performance penalty, however performance will increase
when accessing the static data e.g. for statistical analysis.

References
[1] Vertical Partitioning Algorithms for Database Design, by Shamkant Navathe, Stefano Ceri, Gio Wiederhold, and Jinglie Dou, Stanford

University 1984 (http:/ / citeseerx. ist. psu. edu/ viewdoc/ summary?doi=10. 1. 1. 97. 8306)

External links
• IBM DB2 partitioning (http:/ / publib. boulder. ibm. com/ infocenter/ db2help/ index. jsp?topic=/ com. ibm. db2.

udb. doc/ admin/ c0004885. htm)
• MySQL partitioning (http:/ / dev. mysql. com/ doc/ refman/ 5. 5/ en/ partitioning. html)
• Oracle partitioning (http:/ / www. oracle. com/ us/ products/ database/ options/ partitioning/ index. htm)
• SQL Server partitions (http:/ / msdn. microsoft. com/ en-us/ library/ ms190787. aspx)
• PostgreSQL partitioning (http:/ / www. postgresql. org/ docs/ current/ interactive/ ddl-partitioning. html)
• Sybase ASE 15.0 partitioning (http:/ / www. sybase. com/ detail?id=1036923)
• MongoDB partitioning (http:/ / www. mongodb. org/ display/ DOCS/ Sharding)
• ScimoreDB partitioning (http:/ / scimore. com/ wiki/ Distributed_schema)
• VoltDB partitioning (http:/ / community. voltdb. com/ docs/ UsingVoltDB/ ChapAppDesign#DesignPartition)

http://en.wikipedia.org/w/index.php?title=Index_%28database%29
http://en.wikipedia.org/w/index.php?title=Database_log
http://en.wikipedia.org/w/index.php?title=Shard_%28database_architecture%29
http://en.wikipedia.org/w/index.php?title=ZIP_code
http://en.wikipedia.org/w/index.php?title=View_%28database%29
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.97.8306
http://publib.boulder.ibm.com/infocenter/db2help/index.jsp?topic=/com.ibm.db2.udb.doc/admin/c0004885.htm
http://publib.boulder.ibm.com/infocenter/db2help/index.jsp?topic=/com.ibm.db2.udb.doc/admin/c0004885.htm
http://dev.mysql.com/doc/refman/5.5/en/partitioning.html
http://www.oracle.com/us/products/database/options/partitioning/index.htm
http://msdn.microsoft.com/en-us/library/ms190787.aspx
http://www.postgresql.org/docs/current/interactive/ddl-partitioning.html
http://www.sybase.com/detail?id=1036923
http://www.mongodb.org/display/DOCS/Sharding
http://scimore.com/wiki/Distributed_schema
http://community.voltdb.com/docs/UsingVoltDB/ChapAppDesign#DesignPartition

145

Components

Concurrency control
In information technology and computer science, especially in the fields of computer programming, operating
systems, multiprocessors, and databases, concurrency control ensures that correct results for concurrent operations
are generated, while getting those results as quickly as possible.
Computer systems, both software and hardware, consist of modules, or components. Each component is designed to
operate correctly, i.e., to obey or to meet certain consistency rules. When components that operate concurrently
interact by messaging or by sharing accessed data (in memory or storage), a certain component's consistency may be
violated by another component. The general area of concurrency control provides rules, methods, design
methodologies, and theories to maintain the consistency of components operating concurrently while interacting, and
thus the consistency and correctness of the whole system. Introducing concurrency control into a system means
applying operation constraints which typically result in some performance reduction. Operation consistency and
correctness should be achieved with as good as possible efficiency, without reducing performance below reasonable.
For example, a failure in concurrency control can result in data corruption from torn read or write operations.

Concurrency control in databases
Comments:

1. This section is applicable to all transactional systems, i.e., to all systems that use database transactions (atomic
transactions; e.g., transactional objects in Systems management and in networks of smartphones which typically
implement private, dedicated database systems), not only general-purpose database management systems
(DBMSs).

2. DBMSs need to deal also with concurrency control issues not typical just to database transactions but rather to
operating systems in general. These issues (e.g., see Concurrency control in operating systems below) are out of
the scope of this section.

Concurrency control in Database management systems (DBMS; e.g., Bernstein et al. 1987, Weikum and Vossen
2001), other transactional objects, and related distributed applications (e.g., Grid computing and Cloud computing)
ensures that database transactions are performed concurrently without violating the data integrity of the respective
databases. Thus concurrency control is an essential element for correctness in any system where two database
transactions or more, executed with time overlap, can access the same data, e.g., virtually in any general-purpose
database system. Consequently a vast body of related research has been accumulated since database systems
emerged in the early 1970s. A well established concurrency control theory for database systems is outlined in the
references mentioned above: serializability theory, which allows to effectively design and analyze concurrency
control methods and mechanisms. An alternative theory for concurrency control of atomic transactions over abstract
data types is presented in (Lynch et al. 1993), and not utilized below. This theory is more refined, complex, with a
wider scope, and has been less utilized in the Database literature than the classical theory above. Each theory has its
pros and cons, emphasis and insight. To some extent they are complementary, and their merging may be useful.
To ensure correctness, a DBMS usually guarantees that only serializable transaction schedules are generated, unless
serializability is intentionally relaxed to increase performance, but only in cases where application correctness is not
harmed. For maintaining correctness in cases of failed (aborted) transactions (which can always happen for many
reasons) schedules also need to have the recoverability (from abort) property. A DBMS also guarantees that no
effect of committed transactions is lost, and no effect of aborted (rolled back) transactions remains in the related

http://en.wikipedia.org/w/index.php?title=Information_technology
http://en.wikipedia.org/w/index.php?title=Computer_science
http://en.wikipedia.org/w/index.php?title=Computer_programming
http://en.wikipedia.org/w/index.php?title=Operating_systems
http://en.wikipedia.org/w/index.php?title=Operating_systems
http://en.wikipedia.org/w/index.php?title=Multiprocessor
http://en.wikipedia.org/w/index.php?title=Software
http://en.wikipedia.org/w/index.php?title=Computer_hardware
http://en.wikipedia.org/w/index.php?title=Computer_memory
http://en.wikipedia.org/w/index.php?title=Computer_data_storage
http://en.wikipedia.org/w/index.php?title=Scientific_theory
http://en.wikipedia.org/w/index.php?title=Data_corruption
http://en.wikipedia.org/w/index.php?title=Torn_data-access_operation
http://en.wikipedia.org/w/index.php?title=Systems_management
http://en.wikipedia.org/w/index.php?title=Smartphone
http://en.wikipedia.org/w/index.php?title=Database_management_system
http://en.wikipedia.org/w/index.php?title=Concurrency_control%23Concurrency_control_in_operating_systems
http://en.wikipedia.org/w/index.php?title=Database_management_system
http://en.wikipedia.org/w/index.php?title=Grid_computing
http://en.wikipedia.org/w/index.php?title=Cloud_computing
http://en.wikipedia.org/w/index.php?title=Concurrency_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Data_integrity
http://en.wikipedia.org/w/index.php?title=Scientific_theory
http://en.wikipedia.org/w/index.php?title=Serializability
http://en.wikipedia.org/w/index.php?title=Abstract_data_type
http://en.wikipedia.org/w/index.php?title=Abstract_data_type
http://en.wikipedia.org/w/index.php?title=Insight
http://en.wikipedia.org/w/index.php?title=Serializability
http://en.wikipedia.org/w/index.php?title=Schedule_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Serializability%23Relaxing_serializability
http://en.wikipedia.org/w/index.php?title=Serializability%23Correctness_-_recoverability
http://en.wikipedia.org/w/index.php?title=Rollback_%28data_management%29

Concurrency control 146

database. Overall transaction characterization is usually summarized by the ACID rules below. As databases have
become distributed, or needed to cooperate in distributed environments (e.g., Federated databases in the early 1990,
and Cloud computing currently), the effective distribution of concurrency control mechanisms has received special
attention.

Database transaction and the ACID rules
The concept of a database transaction (or atomic transaction) has evolved in order to enable both a well understood
database system behavior in a faulty environment where crashes can happen any time, and recovery from a crash to a
well understood database state. A database transaction is a unit of work, typically encapsulating a number of
operations over a database (e.g., reading a database object, writing, acquiring lock, etc.), an abstraction supported in
database and also other systems. Each transaction has well defined boundaries in terms of which program/code
executions are included in that transaction (determined by the transaction's programmer via special transaction
commands). Every database transaction obeys the following rules (by support in the database system; i.e., a database
system is designed to guarantee them for the transactions it runs):
• Atomicity - Either the effects of all or none of its operations remain ("all or nothing" semantics) when a

transaction is completed (committed or aborted respectively). In other words, to the outside world a committed
transaction appears (by its effects on the database) to be indivisible, atomic, and an aborted transaction does not
leave effects on the database at all, as if never existed.

• Consistency - Every transaction must leave the database in a consistent (correct) state, i.e., maintain the
predetermined integrity rules of the database (constraints upon and among the database's objects). A transaction
must transform a database from one consistent state to another consistent state (however, it is the responsibility of
the transaction's programmer to make sure that the transaction itself is correct, i.e., performs correctly what it
intends to perform (from the application's point of view) while the predefined integrity rules are enforced by the
DBMS). Thus since a database can be normally changed only by transactions, all the database's states are
consistent. An aborted transaction does not change the database state it has started from, as if it never existed
(atomicity above).

• Isolation - Transactions cannot interfere with each other (as an end result of their executions). Moreover, usually
(depending on concurrency control method) the effects of an incomplete transaction are not even visible to
another transaction. Providing isolation is the main goal of concurrency control.

• Durability - Effects of successful (committed) transactions must persist through crashes (typically by recording
the transaction's effects and its commit event in a non-volatile memory).

The concept of atomic transaction has been extended during the years to what has become Business transactions
which actually implement types of Workflow and are not atomic. However also such enhanced transactions typically
utilize atomic transactions as components.

Why is concurrency control needed?
If transactions are executed serially, i.e., sequentially with no overlap in time, no transaction concurrency exists.
However, if concurrent transactions with interleaving operations are allowed in an uncontrolled manner, some
unexpected, undesirable result may occur. Here are some typical examples:
1.1. The lost update problem: A second transaction writes a second value of a data-item (datum) on top of a first value

written by a first concurrent transaction, and the first value is lost to other transactions running concurrently
which need, by their precedence, to read the first value. The transactions that have read the wrong value end with
incorrect results.

2.2. The dirty read problem: Transactions read a value written by a transaction that has been later aborted. This value
disappears from the database upon abort, and should not have been read by any transaction ("dirty read"). The
reading transactions end with incorrect results.

http://en.wikipedia.org/w/index.php?title=Federated_database
http://en.wikipedia.org/w/index.php?title=Cloud_computing
http://en.wikipedia.org/w/index.php?title=Atomicity_%28database_systems%29
http://en.wikipedia.org/w/index.php?title=Database_Consistency_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Isolation_%28database_systems%29
http://en.wikipedia.org/w/index.php?title=Durability_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Crash_%28computing%29
http://en.wikipedia.org/w/index.php?title=Non-volatile_memory
http://en.wikipedia.org/w/index.php?title=Business_transaction_management
http://en.wikipedia.org/w/index.php?title=Workflow

Concurrency control 147

3.3. The incorrect summary problem: While one transaction takes a summary over the values of all the instances of a
repeated data-item, a second transaction updates some instances of that data-item. The resulting summary does
not reflect a correct result for any (usually needed for correctness) precedence order between the two transactions
(if one is executed before the other), but rather some random result, depending on the timing of the updates, and
whether certain update results have been included in the summary or not.

Most high-performance transactional systems need to run transactions concurrently to meet their performance
requirements. Thus, without concurrency control such systems can neither provide correct results nor maintain their
databases consistent.

Concurrency control mechanisms

Categories

The main categories of concurrency control mechanisms are:
• Optimistic - Delay the checking of whether a transaction meets the isolation and other integrity rules (e.g.,

serializability and recoverability) until its end, without blocking any of its (read, write) operations ("...and be
optimistic about the rules being met..."), and then abort a transaction to prevent the violation, if the desired rules
are to be violated upon its commit. An aborted transaction is immediately restarted and re-executed, which incurs
an obvious overhead (versus executing it to the end only once). If not too many transactions are aborted, then
being optimistic is usually a good strategy.

• Pessimistic - Block an operation of a transaction, if it may cause violation of the rules, until the possibility of
violation disappears. Blocking operations is typically involved with performance reduction.

• Semi-optimistic - Block operations in some situations, if they may cause violation of some rules, and do not
block in other situations while delaying rules checking (if needed) to transaction's end, as done with optimistic.

Different categories provide different performance, i.e., different average transaction completion rates (throughput),
depending on transaction types mix, computing level of parallelism, and other factors. If selection and knowledge
about trade-offs are available, then category and method should be chosen to provide the highest performance.
The mutual blocking between two transactions (where each one blocks the other) or more results in a deadlock,
where the transactions involved are stalled and cannot reach completion. Most non-optimistic mechanisms (with
blocking) are prone to deadlocks which are resolved by an intentional abort of a stalled transaction (which releases
the other transactions in that deadlock), and its immediate restart and re-execution. The likelihood of a deadlock is
typically low.
Both blocking, deadlocks, and aborts result in performance reduction, and hence the trade-offs between the
categories.

Methods

Many methods for concurrency control exist. Most of them can be implemented within either main category above.
The major methods,[1] which have each many variants, and in some cases may overlap or be combined, are:
1. Locking (e.g., Two-phase locking - 2PL) - Controlling access to data by locks assigned to the data. Access of a

transaction to a data item (database object) locked by another transaction may be blocked (depending on lock type
and access operation type) until lock release.

2. Serialization graph checking (also called Serializability, or Conflict, or Precedence graph checking) - Checking
for cycles in the schedule's graph and breaking them by aborts.

3. Timestamp ordering (TO) - Assigning timestamps to transactions, and controlling or checking access to data by
timestamp order.

4. Commitment ordering (or Commit ordering; CO) - Controlling or checking transactions' chronological order of
commit events to be compatible with their respective precedence order.

http://en.wikipedia.org/w/index.php?title=Optimistic_concurrency_control
http://en.wikipedia.org/w/index.php?title=Serializability
http://en.wikipedia.org/w/index.php?title=Serializability%23Correctness_-_recoverability
http://en.wikipedia.org/w/index.php?title=Deadlock
http://en.wikipedia.org/w/index.php?title=Two-phase_locking
http://en.wikipedia.org/w/index.php?title=Lock_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Serializability%23Testing_conflict_serializability
http://en.wikipedia.org/w/index.php?title=Cycle_%28graph_theory%29
http://en.wikipedia.org/w/index.php?title=Directed_graph
http://en.wikipedia.org/w/index.php?title=Timestamp-based_concurrency_control
http://en.wikipedia.org/w/index.php?title=Commitment_ordering
http://en.wikipedia.org/w/index.php?title=Serializability%23Testing_conflict_serializability

Concurrency control 148

Other major concurrency control types that are utilized in conjunction with the methods above include:
• Multiversion concurrency control (MVCC) - Increasing concurrency and performance by generating a new

version of a database object each time the object is written, and allowing transactions' read operations of several
last relevant versions (of each object) depending on scheduling method.

• Index concurrency control - Synchronizing access operations to indexes, rather than to user data. Specialized
methods provide substantial performance gains.

• Private workspace model (Deferred update) - Each transaction maintains a private workspace for its accessed
data, and its changed data become visible outside the transaction only upon its commit (e.g., Weikum and Vossen
2001). This model provides a different concurrency control behavior with benefits in many cases.

The most common mechanism type in database systems since their early days in the 1970s has been Strong strict
Two-phase locking (SS2PL; also called Rigorous scheduling or Rigorous 2PL) which is a special case (variant) of
both Two-phase locking (2PL) and Commitment ordering (CO). It is pessimistic. In spite of its long name (for
historical reasons) the idea of the SS2PL mechanism is simple: "Release all locks applied by a transaction only after
the transaction has ended." SS2PL (or Rigorousness) is also the name of the set of all schedules that can be generated
by this mechanism, i.e., these are SS2PL (or Rigorous) schedules, have the SS2PL (or Rigorousness) property.

Major goals of concurrency control mechanisms
Concurrency control mechanisms firstly need to operate correctly, i.e., to maintain each transaction's integrity rules
(as related to concurrency; application-specific integrity rule are out of the scope here) while transactions are running
concurrently, and thus the integrity of the entire transactional system. Correctness needs to be achieved with as good
performance as possible. In addition, increasingly a need exists to operate effectively while transactions are
distributed over processes, computers, and computer networks. Other subjects that may affect concurrency control
are recovery and replication.

Correctness

Serializability

For correctness, a common major goal of most concurrency control mechanisms is generating schedules with the
Serializability property. Without serializability undesirable phenomena may occur, e.g., money may disappear from
accounts, or be generated from nowhere. Serializability of a schedule means equivalence (in the resulting database
values) to some serial schedule with the same transactions (i.e., in which transactions are sequential with no overlap
in time, and thus completely isolated from each other: No concurrent access by any two transactions to the same data
is possible). Serializability is considered the highest level of isolation among database transactions, and the major
correctness criterion for concurrent transactions. In some cases compromised, relaxed forms of serializability are
allowed for better performance (e.g., the popular Snapshot isolation mechanism) or to meet availability requirements
in highly distributed systems (see Eventual consistency), but only if application's correctness is not violated by the
relaxation (e.g., no relaxation is allowed for money transactions, since by relaxation money can disappear, or appear
from nowhere).
Almost all implemented concurrency control mechanisms achieve serializability by providing Conflict serializablity,
a broad special case of serializability (i.e., it covers, enables most serializable schedules, and does not impose
significant additional delay-causing constraints) which can be implemented efficiently.

http://en.wikipedia.org/w/index.php?title=Multiversion_concurrency_control
http://en.wikipedia.org/w/index.php?title=Index_locking
http://en.wikipedia.org/w/index.php?title=Index_%28database%29
http://en.wikipedia.org/w/index.php?title=Two-phase_locking
http://en.wikipedia.org/w/index.php?title=Two-phase_locking
http://en.wikipedia.org/w/index.php?title=Two-phase_locking
http://en.wikipedia.org/w/index.php?title=Commitment_ordering
http://en.wikipedia.org/w/index.php?title=Distributed_transaction
http://en.wikipedia.org/w/index.php?title=Process_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Computer
http://en.wikipedia.org/w/index.php?title=Computer_network
http://en.wikipedia.org/w/index.php?title=Data_recovery
http://en.wikipedia.org/w/index.php?title=Replication_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Schedule_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Serializability
http://en.wikipedia.org/w/index.php?title=Isolation_%28database_systems%29
http://en.wikipedia.org/w/index.php?title=Serializability%23Relaxing_serializability
http://en.wikipedia.org/w/index.php?title=Snapshot_isolation
http://en.wikipedia.org/w/index.php?title=Availability
http://en.wikipedia.org/w/index.php?title=Eventual_consistency
http://en.wikipedia.org/w/index.php?title=Money
http://en.wikipedia.org/w/index.php?title=Serializability%23View_and_conflict_serializability

Concurrency control 149

Recoverability

See Recoverability in Serializability

Comment: While in the general area of systems the term "recoverability" may refer to the ability of a system to
recover from failure or from an incorrect/forbidden state, within concurrency control of database systems this term
has received a specific meaning.
Concurrency control typically also ensures the Recoverability property of schedules for maintaining correctness in
cases of aborted transactions (which can always happen for many reasons). Recoverability (from abort) means that
no committed transaction in a schedule has read data written by an aborted transaction. Such data disappear from the
database (upon the abort) and are parts of an incorrect database state. Reading such data violates the consistency rule
of ACID. Unlike Serializability, Recoverability cannot be compromised, relaxed at any case, since any relaxation
results in quick database integrity violation upon aborts. The major methods listed above provide serializability
mechanisms. None of them in its general form automatically provides recoverability, and special considerations and
mechanism enhancements are needed to support recoverability. A commonly utilized special case of recoverability is
Strictness, which allows efficient database recovery from failure (but excludes optimistic implementations; e.g.,
Strict CO (SCO) cannot have an optimistic implementation, but has semi-optimistic ones).
Comment: Note that the Recoverability property is needed even if no database failure occurs and no database
recovery from failure is needed. It is rather needed to correctly automatically handle transaction aborts, which may
be unrelated to database failure and recovery from it.

Distribution

With the fast technological development of computing the difference between local and distributed computing over
low latency networks or buses is blurring. Thus the quite effective utilization of local techniques in such distributed
environments is common, e.g., in computer clusters and multi-core processors. However the local techniques have
their limitations and use multi-processes (or threads) supported by multi-processors (or multi-cores) to scale. This
often turns transactions into distributed ones, if they themselves need to span multi-processes. In these cases most
local concurrency control techniques do not scale well.

Distributed serializability and Commitment ordering

See Distributed serializability in Serializability

As database systems have become distributed, or started to cooperate in distributed environments (e.g., Federated
databases in the early 1990s, and nowadays Grid computing, Cloud computing, and networks with smartphones),
some transactions have become distributed. A distributed transaction means that the transaction spans processes, and
may span computers and geographical sites. This generates a need in effective distributed concurrency control
mechanisms. Achieving the Serializability property of a distributed system's schedule (see Distributed serializability
and Global serializability (Modular serializability)) effectively poses special challenges typically not met by most of
the regular serializability mechanisms, originally designed to operate locally. This is especially due to a need in
costly distribution of concurrency control information amid communication and computer latency. The only known
general effective technique for distribution is Commitment ordering, which was disclosed publicly in 1991 (after
being patented). Commitment ordering (Commit ordering, CO; Raz 1992) means that transactions' chronological
order of commit events is kept compatible with their respective precedence order. CO does not require the
distribution of concurrency control information and provides a general effective solution (reliable, high-performance,
and scalable) for both distributed and global serializability, also in a heterogeneous environment with database
systems (or other transactional objects) with different (any) concurrency control mechanisms. CO is indifferent to
which mechanism is utilized, since it does not interfere with any transaction operation scheduling (which most
mechanisms control), and only determines the order of commit events. Thus, CO enables the efficient distribution of
all other mechanisms, and also the distribution of a mix of different (any) local mechanisms, for achieving

http://en.wikipedia.org/w/index.php?title=Serializability%23Correctness_-_recoverability
http://en.wikipedia.org/w/index.php?title=Serializability
http://en.wikipedia.org/w/index.php?title=Serializability%23Correctness_-_recoverability
http://en.wikipedia.org/w/index.php?title=Schedule_%28computer_science%29%23Strict
http://en.wikipedia.org/w/index.php?title=Commitment_ordering%23Strict_CO_%28SCO%29
http://en.wikipedia.org/w/index.php?title=The_History_of_Commitment_Ordering%23Semi-optimistic_database_scheduler
http://en.wikipedia.org/w/index.php?title=Computer_network
http://en.wikipedia.org/w/index.php?title=Bus_%28computing%29
http://en.wikipedia.org/w/index.php?title=Computer_cluster
http://en.wikipedia.org/w/index.php?title=Multi-core_processor
http://en.wikipedia.org/w/index.php?title=Serializability%23Distributed_serializability
http://en.wikipedia.org/w/index.php?title=Serializability
http://en.wikipedia.org/w/index.php?title=Federated_database
http://en.wikipedia.org/w/index.php?title=Federated_database
http://en.wikipedia.org/w/index.php?title=Grid_computing
http://en.wikipedia.org/w/index.php?title=Cloud_computing
http://en.wikipedia.org/w/index.php?title=Smartphone
http://en.wikipedia.org/w/index.php?title=Distributed_transaction
http://en.wikipedia.org/w/index.php?title=Process_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Computer
http://en.wikipedia.org/w/index.php?title=Distributed_concurrency_control
http://en.wikipedia.org/w/index.php?title=Serializability%23Distributed_serializability
http://en.wikipedia.org/w/index.php?title=Global_serializability
http://en.wikipedia.org/w/index.php?title=Latency_%28engineering%29
http://en.wikipedia.org/w/index.php?title=Patent
http://en.wikipedia.org/w/index.php?title=Commitment_ordering
http://en.wikipedia.org/w/index.php?title=Serializability%23Testing_conflict_serializability
http://en.wikipedia.org/w/index.php?title=Reliability_engineering
http://en.wikipedia.org/w/index.php?title=Scalability

Concurrency control 150

distributed and global serializability. The existence of such a solution has been considered "unlikely" until 1991, and
by many experts also later, due to misunderstanding of the CO solution (see Quotations in Global serializability). An
important side-benefit of CO is automatic distributed deadlock resolution. Contrary to CO, virtually all other
techniques (when not combined with CO) are prone to distributed deadlocks (also called global deadlocks) which
need special handling. CO is also the name of the resulting schedule property: A schedule has the CO property if the
chronological order of its transactions' commit events is compatible with the respective transactions' precedence
(partial) order.
SS2PL mentioned above is a variant (special case) of CO and thus also effective to achieve distributed and global
serializability. It also provides automatic distributed deadlock resolution (a fact overlooked in the research literature
even after CO's publication), as well as Strictness and thus Recoverability. Possessing these desired properties
together with known efficient locking based implementations explains SS2PL's popularity. SS2PL has been utilized
to efficiently achieve Distributed and Global serializability since the 1980, and has become the de facto standard for
it. However, SS2PL is blocking and constraining (pessimistic), and with the proliferation of distribution and
utilization of systems different from traditional database systems (e.g., as in Cloud computing), less constraining
types of CO (e.g., Optimistic CO) may be needed for better performance.
Comments:

1. The Distributed conflict serializability property in its general form is difficult to achieve efficiently, but it is
achieved efficiently via its special case Distributed CO: Each local component (e.g., a local DBMS) needs both to
provide some form of CO, and enforce a special vote ordering strategy for the Two-phase commit protocol (2PC:
utilized to commit distributed transactions). Differently from the general Distributed CO, Distributed SS2PL
exists automatically when all local components are SS2PL based (in each component CO exists, implied, and the
vote ordering strategy is now met automatically). This fact has been known and utilized since the 1980s (i.e., that
SS2PL exists globally, without knowing about CO) for efficient Distributed SS2PL, which implies Distributed
serializability and strictness (e.g., see Raz 1992, page 293; it is also implied in Bernstein et al. 1987, page 78).
Less constrained Distributed serializability and strictness can be efficiently achieved by Distributed Strict CO
(SCO), or by a mix of SS2PL based and SCO based local components.

2. About the references and Commitment ordering: (Bernstein et al. 1987) was published before the discovery of
CO in 1990. The CO schedule property is called Dynamic atomicity in (Lynch et al. 1993, page 201). CO is
described in (Weikum and Vossen 2001, pages 102, 700), but the description is partial and misses CO's essence.
(Raz 1992) was the first refereed and accepted for publication article about CO algorithms (however, publications
about an equivalent Dynamic atomicity property can be traced to 1988). Other CO articles followed. (Bernstein
and Newcomer 2009) note CO as one of the four major concurrency control methods, and CO's ability to provide
interoperability among other methods.

Distributed recoverability

Unlike Serializability, Distributed recoverability and Distributed strictness can be achieved efficiently in a
straightforward way, similarly to the way Distributed CO is achieved: In each database system they have to be
applied locally, and employ a vote ordering strategy for the Two-phase commit protocol (2PC; Raz 1992, page 307).
As has been mentioned above, Distributed SS2PL, including Distributed strictness (recoverability) and Distributed
commitment ordering (serializability), automatically employs the needed vote ordering strategy, and is achieved
(globally) when employed locally in each (local) database system (as has been known and utilized for many years; as
a matter of fact locality is defined by the boundary of a 2PC participant (Raz 1992)).

http://en.wikipedia.org/w/index.php?title=Commitment_ordering%23Summary
http://en.wikipedia.org/w/index.php?title=Global_serializability%23Quotations
http://en.wikipedia.org/w/index.php?title=Global_serializability
http://en.wikipedia.org/w/index.php?title=Commitment_ordering%23Exact_characterization_of_voting-deadlocks_by_global_cycles
http://en.wikipedia.org/w/index.php?title=Deadlock%23Distributed_deadlock
http://en.wikipedia.org/w/index.php?title=Serializability%23Testing_conflict_serializability
http://en.wikipedia.org/w/index.php?title=Serializability%23Testing_conflict_serializability
http://en.wikipedia.org/w/index.php?title=Two-phase_locking
http://en.wikipedia.org/w/index.php?title=De_facto_standard
http://en.wikipedia.org/w/index.php?title=Cloud_computing
http://en.wikipedia.org/w/index.php?title=Commitment_ordering%23Distributed_optimistic_CO_%28DOCO%29
http://en.wikipedia.org/w/index.php?title=Two-phase_commit_protocol
http://en.wikipedia.org/w/index.php?title=Distributed_transaction
http://en.wikipedia.org/w/index.php?title=Commitment_ordering%23Strong_strict_two_phase_locking_%28SS2PL%29
http://en.wikipedia.org/w/index.php?title=Commitment_ordering%23Strict_CO_%28SCO%29
http://en.wikipedia.org/w/index.php?title=Commitment_ordering%23Strict_CO_%28SCO%29
http://en.wikipedia.org/w/index.php?title=The_History_of_Commitment_Ordering%23Dynamic_atomicity
http://en.wikipedia.org/w/index.php?title=Commitment_ordering%23Summary
http://en.wikipedia.org/w/index.php?title=Commitment_ordering%23References
http://en.wikipedia.org/w/index.php?title=Two-phase_commit_protocol
http://en.wikipedia.org/w/index.php?title=Two-phase_locking
http://en.wikipedia.org/w/index.php?title=Commitment_ordering

Concurrency control 151

Other major subjects of attention

The design of concurrency control mechanisms is often influenced by the following subjects:

Recovery

All systems are prone to failures, and handling recovery from failure is a must. The properties of the generated
schedules, which are dictated by the concurrency control mechanism, may have an impact on the effectiveness and
efficiency of recovery. For example, the Strictness property (mentioned in the section Recoverability above) is often
desirable for an efficient recovery.

Replication

For high availability database objects are often replicated. Updates of replicas of a same database object need to be
kept synchronized. This may affect the way concurrency control is done (e.g., Gray et al. 1996).

References
• Philip A. Bernstein, Vassos Hadzilacos, Nathan Goodman (1987): Concurrency Control and Recovery in

Database Systems [2] (free PDF download), Addison Wesley Publishing Company, 1987, ISBN 0-201-10715-5
• Gerhard Weikum, Gottfried Vossen (2001): Transactional Information Systems [3], Elsevier, ISBN

1-55860-508-8
• Nancy Lynch, Michael Merritt, William Weihl, Alan Fekete (1993): Atomic Transactions in Concurrent and

Distributed Systems [4], Morgan Kauffman (Elsevier), August 1993, ISBN 978-1-55860-104-8, ISBN
1-55860-104-X

• Yoav Raz (1992): "The Principle of Commitment Ordering, or Guaranteeing Serializability in a Heterogeneous
Environment of Multiple Autonomous Resource Managers Using Atomic Commitment." [5] (PDF [6]),
Proceedings of the Eighteenth International Conference on Very Large Data Bases (VLDB), pp. 292-312,
Vancouver, Canada, August 1992. (also DEC-TR 841, Digital Equipment Corporation, November 1990)

Footnotes
[1] Philip A. Bernstein, Eric Newcomer (2009): Principles of Transaction Processing, 2nd Edition (http:/ / www. elsevierdirect. com/ product.

jsp?isbn=9781558606234), Morgan Kaufmann (Elsevier), June 2009, ISBN 978-1-55860-623-4 (page 145)
[2] http:/ / research. microsoft. com/ en-us/ people/ philbe/ ccontrol. aspx
[3] http:/ / www. elsevier. com/ wps/ find/ bookdescription. cws_home/ 677937/ description#description
[4] http:/ / www. elsevier. com/ wps/ find/ bookdescription. cws_home/ 680521/ description#description
[5] http:/ / www. informatik. uni-trier. de/ ~ley/ db/ conf/ vldb/ Raz92. html
[6] http:/ / www. vldb. org/ conf/ 1992/ P292. PDF

Concurrency control in operating systems
Multitasking operating systems, especially real-time operating systems, need to maintain the illusion that all tasks
running on top of them are all running at the same time, even though only one or a few tasks really are running at
any given moment due to the limitations of the hardware the operating system is running on. Such multitasking is
fairly simple when all tasks are independent from each other. However, when several tasks try to use the same
resource, or when tasks try to share information, it can lead to confusion and inconsistency. The task of concurrent
computing is to solve that problem. Some solutions involve "locks" similar to the locks used in databases, but they
risk causing problems of their own such as deadlock. Other solutions are Non-blocking algorithms.

http://en.wikipedia.org/w/index.php?title=Data_recovery
http://en.wikipedia.org/w/index.php?title=Concurrency_control%23Recoverability
http://en.wikipedia.org/w/index.php?title=Replication_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Phil_Bernstein
http://research.microsoft.com/en-us/people/philbe/ccontrol.aspx
http://en.wikipedia.org/w/index.php?title=Gerhard_Weikum
http://www.elsevier.com/wps/find/bookdescription.cws_home/677937/description#description
http://en.wikipedia.org/w/index.php?title=Nancy_Lynch
http://www.elsevier.com/wps/find/bookdescription.cws_home/680521/description#description
http://en.wikipedia.org/w/index.php?title=Yoav_Raz
http://www.informatik.uni-trier.de/~ley/db/conf/vldb/Raz92.html
http://www.vldb.org/conf/1992/P292.PDF
http://en.wikipedia.org/w/index.php?title=Digital_Equipment_Corporation
http://en.wikipedia.org/w/index.php?title=Phil_Bernstein
http://www.elsevierdirect.com/product.jsp?isbn=9781558606234
http://www.elsevierdirect.com/product.jsp?isbn=9781558606234
http://research.microsoft.com/en-us/people/philbe/ccontrol.aspx
http://www.elsevier.com/wps/find/bookdescription.cws_home/677937/description#description
http://www.elsevier.com/wps/find/bookdescription.cws_home/680521/description#description
http://www.informatik.uni-trier.de/~ley/db/conf/vldb/Raz92.html
http://www.vldb.org/conf/1992/P292.PDF
http://en.wikipedia.org/w/index.php?title=Computer_multitasking
http://en.wikipedia.org/w/index.php?title=Real-time_operating_system
http://en.wikipedia.org/w/index.php?title=Concurrent_computing
http://en.wikipedia.org/w/index.php?title=Concurrent_computing
http://en.wikipedia.org/w/index.php?title=Deadlock
http://en.wikipedia.org/w/index.php?title=Non-blocking_algorithm

Concurrency control 152

References
• Andrew S. Tanenbaum, Albert S Woodhull (2006): Operating Systems Design and Implementation, 3rd Edition,

Prentice Hall, ISBN 0-13-142938-8
• Silberschatz, Avi; Galvin, Peter; Gagne, Greg (2008). Operating Systems Concepts, 8th edition. John Wiley &

Sons. ISBN 0-470-12872-0.

Data dictionary
A data dictionary, or metadata repository, as defined in the IBM Dictionary of Computing, is a "centralized
repository of information about data such as meaning, relationships to other data, origin, usage, and format."[1] The
term may have one of several closely related meanings pertaining to databases and database management systems
(DBMS):
• a document describing a database or collection of databases
• an integral component of a DBMS that is required to determine its structure
• a piece of middleware that extends or supplants the native data dictionary of a DBMS

Documentation
The term data dictionary and data repository are used to indicate a more general software utility than a catalogue.
A catalogue is closely coupled with the DBMS software. It provides the information stored in it to the user and the
DBA, but it is mainly accessed by the various software modules of the DBMS itself, such as DDL and DML
compilers, the query optimiser, the transaction processor, report generators, and the constraint enforcer. On the other
hand, a data dictionary is a data structure that stores metadata, i.e., (structured) data about data. The software
package for a stand-alone data dictionary or data repository may interact with the software modules of the DBMS,
but it is mainly used by the designers, users and administrators of a computer system for information resource
management. These systems are used to maintain information on system hardware and software configuration,
documentation, application and users as well as other information relevant to system administration.[2]

If a data dictionary system is used only by the designers, users, and administrators and not by the DBMS Software, it
is called a passive data dictionary. Otherwise, it is called an active data dictionary or data dictionary. When a
passive data dictionary is updated, it is done so manually and independently from any changes to a DBMS (database)
structure. With an active data dictionary, the dictionary is updated first and changes occur in the DBMS
automatically as a result.
Database users and application developers can benefit from an authoritative data dictionary document that catalogs
the organization, contents, and conventions of one or more databases.[3] This typically includes the names and
descriptions of various tables (records or Entities) and their contents (fields) plus additional details, like the type and
length of each data element. Another important piece of information that a data dictionary can provide is the
relationship between Tables. This is sometimes referred to in Entity-Relationship diagrams, or if using Set
descriptors, identifying in which Sets database Tables participate.
In an active data dictionary constraints may be placed upon the underlying data. For instance, a Range may be
imposed on the value of numeric data in a data element (field), or a Record in a Table may be FORCED to
participate in a set relationship with another Record-Type. Additionally, a distributed DBMS may have certain
location specifics described within its active data dictionary (e.g. where Tables are physically located).
The data dictionary consists of record types (tables) created in the database by systems generated command files,
tailored for each supported back-end DBMS. Command files contain SQL Statements for CREATE TABLE,
CREATE UNIQUE INDEX, ALTER TABLE (for referential integrity), etc., using the specific statement required by

http://en.wikipedia.org/w/index.php?title=Prentice_Hall
http://en.wikipedia.org/w/index.php?title=John_Wiley_%26_Sons
http://en.wikipedia.org/w/index.php?title=John_Wiley_%26_Sons
http://en.wikipedia.org/w/index.php?title=International_Standard_Book_Number
http://en.wikipedia.org/w/index.php?title=Special:BookSources/0-470-12872-0
http://en.wikipedia.org/w/index.php?title=Metadata
http://en.wikipedia.org/w/index.php?title=Software_repository
http://en.wikipedia.org/w/index.php?title=Database_management_system
http://en.wikipedia.org/w/index.php?title=Document
http://en.wikipedia.org/w/index.php?title=Software_component
http://en.wikipedia.org/w/index.php?title=Database_management_system
http://en.wikipedia.org/w/index.php?title=Middleware
http://en.wikipedia.org/w/index.php?title=Data_definition_language
http://en.wikipedia.org/w/index.php?title=Data_manipulation_language
http://en.wikipedia.org/w/index.php?title=Metadata
http://en.wikipedia.org/w/index.php?title=User_%28computing%29
http://en.wikipedia.org/w/index.php?title=Application_software
http://en.wikipedia.org/w/index.php?title=Data_type
http://en.wikipedia.org/w/index.php?title=Data_element

Data dictionary 153

that type of database.
There is no universal standard as to the level of detail in such a document.

Middleware
In the construction of database applications, it can be useful to introduce an additional layer of data dictionary
software, i.e. middleware, which communicates with the underlying DBMS data dictionary. Such a "high-level" data
dictionary may offer additional features and a degree of flexibility that goes beyond the limitations of the native
"low-level" data dictionary, whose primary purpose is to support the basic functions of the DBMS, not the
requirements of a typical application. For example, a high-level data dictionary can provide alternative
entity-relationship models tailored to suit different applications that share a common database.[4] Extensions to the
data dictionary also can assist in query optimization against distributed databases.[5] Additionally, DBA functions are
often automated using restructuring tools that are tightly coupled to an active data dictionary.
Software frameworks aimed at rapid application development sometimes include high-level data dictionary facilities,
which can substantially reduce the amount of programming required to build menus, forms, reports, and other
components of a database application, including the database itself. For example, PHPLens includes a PHP class
library to automate the creation of tables, indexes, and foreign key constraints portably for multiple databases.[6]

Another PHP-based data dictionary, part of the RADICORE toolkit, automatically generates program objects,
scripts, and SQL code for menus and forms with data validation and complex joins.[7] For the ASP.NET
environment, Base One's data dictionary provides cross-DBMS facilities for automated database creation, data
validation, performance enhancement (caching and index utilization), application security, and extended data
types.[8] Visual DataFlex features[9] provides the ability to use DataDictionaries as class files to form middle layer
between the user interface and the underlying database. The intent is to create standardized rules to maintain data
integrity and enforce business rules throughout one or more related applications.

References
[1] ACM, IBM Dictionary of Computing (http:/ / portal. acm. org/ citation. cfm?id=541721), 10th edition, 1993
[2] Ramez Elmasri, Shamkant B. Navathe: Fundamentals of Database Systems, 3rd. ed. sect. 17.5, p. 582
[3] TechTarget, SearchSOA, What is a data dictionary? (http:/ / searchsoa. techtarget. com/ sDefinition/ 0,,sid26_gci211896,00. html)
[4] U.S. Patent 4774661, Database management system with active data dictionary (http:/ / www. freepatentsonline. com/ 4774661. html), 19

November 1985, AT&T
[5] U.S. Patent 4769772, Automated query optimization method using both global and parallel local optimizations for materialization access

planning for distributed databases (http:/ / www. freepatentsonline. com/ 4769772. html), 28 February 1985, Honeywell Bull
[6] PHPLens, ADOdb Data Dictionary Library for PHP (http:/ / phplens. com/ lens/ adodb/ docs-datadict. htm)
[7] RADICORE, What is a Data Dictionary? (http:/ / www. radicore. org/ viewarticle. php?article_id=5)
[8] Base One International Corp., Base One Data Dictionary (http:/ / www. boic. com/ b1ddic. htm)
[9] VISUAL DATAFLEX, features (http:/ / www. visualdataflex. com/ features. asp?pageid=1030)

External links
• Yourdon, Structured Analysis Wiki, Data Dictionaries (http:/ / yourdon. com/ strucanalysis/ wiki/ index.

php?title=Chapter_10)

http://en.wikipedia.org/w/index.php?title=Middleware
http://en.wikipedia.org/w/index.php?title=Entity-relationship_model
http://en.wikipedia.org/w/index.php?title=Software_framework
http://en.wikipedia.org/w/index.php?title=Rapid_application_development
http://en.wikipedia.org/w/index.php?title=Menu_%28computing%29
http://en.wikipedia.org/w/index.php?title=Form_%28programming%29
http://en.wikipedia.org/w/index.php?title=PHP
http://en.wikipedia.org/w/index.php?title=Class_library
http://en.wikipedia.org/w/index.php?title=Class_library
http://en.wikipedia.org/w/index.php?title=Portability_%28software%29
http://en.wikipedia.org/w/index.php?title=Object_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Scripting_language
http://en.wikipedia.org/w/index.php?title=Data_validation
http://en.wikipedia.org/w/index.php?title=Join_%28SQL%29
http://en.wikipedia.org/w/index.php?title=ASP.NET
http://en.wikipedia.org/w/index.php?title=Base_One_International
http://en.wikipedia.org/w/index.php?title=Cache_%28computing%29
http://en.wikipedia.org/w/index.php?title=Application_security
http://en.wikipedia.org/w/index.php?title=Data_type
http://en.wikipedia.org/w/index.php?title=Data_type
http://en.wikipedia.org/w/index.php?title=Visual_DataFlex
http://en.wikipedia.org/w/index.php?title=Features
http://portal.acm.org/citation.cfm?id=541721
http://searchsoa.techtarget.com/sDefinition/0,,sid26_gci211896,00.html
http://www.freepatentsonline.com/4774661.html
http://www.freepatentsonline.com/4769772.html
http://phplens.com/lens/adodb/docs-datadict.htm
http://www.radicore.org/viewarticle.php?article_id=5
http://www.boic.com/b1ddic.htm
http://www.visualdataflex.com/features.asp?pageid=1030
http://yourdon.com/strucanalysis/wiki/index.php?title=Chapter_10
http://yourdon.com/strucanalysis/wiki/index.php?title=Chapter_10

Java Database Connectivity 154

Java Database Connectivity

JDBC

Type Data Access API

Website Java SE 7 [6]

JDBC is a Java-based data access technology (Java Standard Edition platform) from Oracle Corporation. This
technology is an API for the Java programming language that defines how a client may access a database. It provides
methods for querying and updating data in a database. JDBC is oriented towards relational databases. A
JDBC-to-ODBC bridge enables connections to any ODBC-accessible data source in the JVM host environment.

History and implementation
Sun Microsystems released JDBC as part of JDK 1.1 on February 19, 1997. It has since formed part of the Java
Standard Edition.
The JDBC classes are contained in the Java package java.sql [1] and javax.sql [2].
Starting with version 3.1, JDBC has been developed under the Java Community Process. JSR 54 specifies JDBC 3.0
(included in J2SE 1.4), JSR 114 specifies the JDBC Rowset additions, and JSR 221 is the specification of JDBC 4.0
(included in Java SE 6).[3]

The latest version, JDBC 4.1, is specified by a maintenance release of JSR 221[4] and is included in Java SE 7.[5]

Functionality
JDBC allows multiple implementations to exist and be used by the same application. The API provides a mechanism
for dynamically loading the correct Java packages and registering them with the JDBC Driver Manager. The Driver
Manager is used as a connection factory for creating JDBC connections.
JDBC connections support creating and executing statements. These may be update statements such as SQL's
CREATE, INSERT, UPDATE and DELETE, or they may be query statements such as SELECT. Additionally,
stored procedures may be invoked through a JDBC connection. JDBC represents statements using one of the
following classes:
• Statement [6] – the statement is sent to the database server each and every time.
• PreparedStatement [7] – the statement is cached and then the execution path is pre-determined on the

database server allowing it to be executed multiple times in an efficient manner.
• CallableStatement [8] – used for executing stored procedures on the database.
Update statements such as INSERT, UPDATE and DELETE return an update count that indicates how many rows
were affected in the database. These statements do not return any other information.
Query statements return a JDBC row result set. The row result set is used to walk over the result set. Individual
columns in a row are retrieved either by name or by column number. There may be any number of rows in the result
set. The row result set has metadata that describes the names of the columns and their types.
There is an extension to the basic JDBC API in the javax.sql [2].
JDBC connections are often managed via a connection pool rather than obtained directly from the driver. Examples
of connection pools include BoneCP [9], C3P0 [10] and DBCP [11]

http://en.wikipedia.org/w/index.php?title=List_of_software_categories
http://download.oracle.com/javase/7/docs/
http://en.wikipedia.org/w/index.php?title=Oracle_Corporation
http://en.wikipedia.org/w/index.php?title=Application_programming_interface
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=JVM
http://en.wikipedia.org/w/index.php?title=Java_Development_Kit
http://en.wikipedia.org/w/index.php?title=Java_Platform%2C_Standard_Edition
http://en.wikipedia.org/w/index.php?title=Java_Platform%2C_Standard_Edition
http://en.wikipedia.org/w/index.php?title=Java_package
http://download.oracle.com/javase/7/docs/api/java/sql/package-summary.html
http://download.oracle.com/javase/7/docs/api/javax/sql/package-summary.html
http://en.wikipedia.org/w/index.php?title=Java_Community_Process
http://en.wikipedia.org/w/index.php?title=Maintenance_release
http://download.oracle.com/javase/7/docs/api/java/sql/Statement.html
http://download.oracle.com/javase/7/docs/api/java/sql/PreparedStatement.html
http://download.oracle.com/javase/7/docs/api/java/sql/CallableStatement.html
http://en.wikipedia.org/w/index.php?title=Stored_procedures
http://en.wikipedia.org/w/index.php?title=Result_set
http://download.oracle.com/javase/7/docs/api/javax/sql/package-summary.html
http://en.wikipedia.org/w/index.php?title=Connection_pool
http://jolbox.com
http://sourceforge.net/projects/c3p0
http://commons.apache.org/dbcp

Java Database Connectivity 155

JDBC drivers
JDBC drivers are client-side adapters (installed on the client machine, not on the server) that convert requests from
Java programs to a protocol that the DBMS can understand.

Types
There are commercial and free drivers available for most relational database servers. These drivers fall into one of
the following types:
• Type 1 that calls native code of the locally available ODBC driver.
• Type 2 that calls database vendor native library on a client side. This code then talks to database over network.
• Type 3, the pure-java driver that talks with the server-side middleware that then talks to database.
• Type 4, the pure-java driver that uses database native protocol.
There is also a type called internal JDBC driver, driver embedded with JRE in Java-enabled SQL databases. It's used
for Java stored procedures. This does not belong to the above classification, although it would likely be either a type
2 or type 4 driver (depending on whether the database itself is implemented in Java or not). An example of this is the
KPRB driver supplied with Oracle RDBMS. "jdbc:default:connection" is a relatively standard way of referring
making such a connection (at least Oracle and Apache Derby support it). The distinction here is that the JDBC client
is actually running as part of the database being accessed, so access can be made directly rather than through network
protocols.

Sources
•• SQLSummit.com publishes list of drivers, including JDBC drivers and vendors
• Oracle provides a list of some JDBC drivers and vendors [12]

• Simba Technologies ships an SDK for building custom JDBC Drivers for any custom/proprietary relational data
source

• RSSBus Type 4 JDBC Drivers for applications, databases, and web services [13].
•• DataDirect Technologies provides a comprehensive suite of fast Type 4 JDBC drivers for all major database they

advertise as Type 5
•• IDS Software provides a Type 3 JDBC driver for concurrent access to all major databases. Supported features

include resultset caching, SSL encryption, custom data source, dbShield
• OpenLink Software ships JDBC Drivers for a variety of databases, including Bridges to other data access

mechanisms (e.g., ODBC, JDBC) which can provide more functionality than the targeted mechanism
• JDBaccess is a Java persistence library for MySQL and Oracle which defines major database access operations in

an easy usable API above JDBC
•• JNetDirect provides a suite of fully Sun J2EE certified high performance JDBC drivers.
• HSQLDB is a RDBMS with a JDBC driver and is available under a BSD license.
•• SchemaCrawler is an open source API that leverages JDBC, and makes database metadata available as plain old

Java objects (POJOs)

http://en.wikipedia.org/w/index.php?title=Adapter_pattern
http://en.wikipedia.org/w/index.php?title=JDBC_driver%23Type_1_Driver_-_JDBC-ODBC_bridge
http://en.wikipedia.org/w/index.php?title=JDBC_driver%23Type_2_Driver_-_Native-API_Driver_specification
http://en.wikipedia.org/w/index.php?title=JDBC_driver%23Type_3_Driver_-_Network-Protocol_Driver
http://en.wikipedia.org/w/index.php?title=JDBC_driver%23Type_4_Driver_-_Native-Protocol_Driver
http://en.wikipedia.org/w/index.php?title=Internal_JDBC_driver
http://en.wikipedia.org/w/index.php?title=Java_stored_procedure
http://en.wikipedia.org/w/index.php?title=Apache_Derby
http://en.wikipedia.org/w/index.php?title=Oracle_Corporation
http://devapp.sun.com/product/jdbc/drivers
http://en.wikipedia.org/w/index.php?title=Simba_Technologies
http://www.rssbus.com/jdbc/
http://en.wikipedia.org/w/index.php?title=OpenLink_Software
http://en.wikipedia.org/w/index.php?title=MySQL
http://en.wikipedia.org/w/index.php?title=Oracle_database
http://en.wikipedia.org/w/index.php?title=HSQLDB

Java Database Connectivity 156

References
[1] http:/ / download. oracle. com/ javase/ 7/ docs/ api/ java/ sql/ package-summary. html
[2] http:/ / download. oracle. com/ javase/ 7/ docs/ api/ javax/ sql/ package-summary. html
[3] JDBC API Specification Version: 4.0 (http:/ / java. sun. com/ products/ jdbc/ download. html#corespec40).
[4] JSR-000221 JDBC API Specification 4.1 (Maintenance Release) (http:/ / jcp. org/ aboutJava/ communityprocess/ mrel/ jsr221/ index. html)
[5] http:/ / docs. oracle. com/ javase/ 7/ docs/ technotes/ guides/ jdbc/ jdbc_41. html
[6] http:/ / download. oracle. com/ javase/ 7/ docs/ api/ java/ sql/ Statement. html
[7] http:/ / download. oracle. com/ javase/ 7/ docs/ api/ java/ sql/ PreparedStatement. html
[8] http:/ / download. oracle. com/ javase/ 7/ docs/ api/ java/ sql/ CallableStatement. html
[9] http:/ / jolbox. com
[10] http:/ / sourceforge. net/ projects/ c3p0
[11] http:/ / commons. apache. org/ dbcp
[12] http:/ / devapp. sun. com/ product/ jdbc/ drivers
[13] http:/ / www. rssbus. com/ jdbc/

External links
• Java SE 7 (http:/ / download. oracle. com/ javase/ 7/ docs/) This documentation has examples where the JDBC

resources are not closed appropriately (swallowing primary exceptions and being able to cause
NullPointerExceptions) and has code prone to SQL injection[citation needed]

• java.sql (http:/ / download. oracle. com/ javase/ 7/ docs/ api/ java/ sql/ package-summary. html) API Javadoc
documentation

• javax.sql (http:/ / download. oracle. com/ javase/ 7/ docs/ api/ javax/ sql/ package-summary. html) API
Javadoc documentation

• O/R Broker (http:/ / www. orbroker. org) Scala JDBC framework
• SqlTool (http:/ / www. hsqldb. org/ doc/ 2. 0/ util-guide/ sqltool-chapt. html) Open source, command-line, generic

JDBC client utility. Works with any JDBC-supporting database.
• JDBC URL Strings and related information of All Databases. (http:/ / codeoftheday. blogspot. com/ 2012/ 12/

java-database-connectivity-jdbc-url. html)

http://download.oracle.com/javase/7/docs/api/java/sql/package-summary.html
http://download.oracle.com/javase/7/docs/api/javax/sql/package-summary.html
http://java.sun.com/products/jdbc/download.html#corespec40
http://jcp.org/aboutJava/communityprocess/mrel/jsr221/index.html
http://docs.oracle.com/javase/7/docs/technotes/guides/jdbc/jdbc_41.html
http://download.oracle.com/javase/7/docs/api/java/sql/Statement.html
http://download.oracle.com/javase/7/docs/api/java/sql/PreparedStatement.html
http://download.oracle.com/javase/7/docs/api/java/sql/CallableStatement.html
http://jolbox.com
http://sourceforge.net/projects/c3p0
http://commons.apache.org/dbcp
http://devapp.sun.com/product/jdbc/drivers
http://www.rssbus.com/jdbc/
http://download.oracle.com/javase/7/docs/
http://en.wikipedia.org/w/index.php?title=SQL_injection
http://en.wikipedia.org/wiki/Citation_needed
http://download.oracle.com/javase/7/docs/api/java/sql/package-summary.html
http://en.wikipedia.org/w/index.php?title=Javadoc
http://download.oracle.com/javase/7/docs/api/javax/sql/package-summary.html
http://www.orbroker.org
http://www.hsqldb.org/doc/2.0/util-guide/sqltool-chapt.html
http://codeoftheday.blogspot.com/2012/12/java-database-connectivity-jdbc-url.html
http://codeoftheday.blogspot.com/2012/12/java-database-connectivity-jdbc-url.html

XQuery API for Java 157

XQuery API for Java

XQJ

Developer(s) Java Community Process

Stable release 1.0 / June 24, 2009

Type Data Access API

Website JSR 225: XQuery API for Java [1]

General architecture of how an XQJ driver is used to communicate with
an XML Database from Java Applications.

XQuery API for Java (XQJ) refers to the common
Java API for the W3C XQuery 1.0 specification.

The XQJ API enables Java programmers to execute
XQuery against an XML data source (e.g. an XML
database) while reducing or eliminating vendor lock
in.

The XQJ API provides Java developers with an
interface to the XQuery Data Model.[2] Its design is
similar to the JDBC API which has a client/server
feel and as such lends itself well to Server based
XML Databases and less well to client-side XQuery
processors, although the "connection" part is a very
minor part of the entire API. Users of the XQJ API
can bind Java values to XQuery expressions,
preventing code injection attacks.[3] Also, multiple
XQuery expressions can be executed as part of an
atomic transaction.

History and implementation

The XQuery API for Java was developed at the Java
Community Process as JSR 225. It had some big
technology backers such as Oracle,[4][5][6][7] IBM,
BEA Systems,[8] Software AG,[9] Intel, Nokia and
DataDirect.

Version 1.0 of the XQuery API for Java Specification was released on June 24, 2009,[10] along with JavaDocs, a
reference implementation and a TCK (Technology Compatibility Kit) which implementing vendors must conform to.

The XQJ classes are contained in the Java package javax.xml.xquery [11]

http://en.wikipedia.org/w/index.php?title=Software_developer
http://en.wikipedia.org/w/index.php?title=Java_Community_Process
http://en.wikipedia.org/w/index.php?title=Software_release_life_cycle
http://en.wikipedia.org/w/index.php?title=List_of_software_categories
http://jcp.org/en/jsr/detail?id=225
http://en.wikipedia.org/w/index.php?title=File%3AXQJ-Architecture.svg
http://en.wikipedia.org/w/index.php?title=Java_API
http://en.wikipedia.org/w/index.php?title=W3C
http://en.wikipedia.org/w/index.php?title=XQuery
http://en.wikipedia.org/w/index.php?title=XQuery
http://en.wikipedia.org/w/index.php?title=XML
http://en.wikipedia.org/w/index.php?title=XML_database
http://en.wikipedia.org/w/index.php?title=XML_database
http://en.wikipedia.org/w/index.php?title=Vendor_lock-in
http://en.wikipedia.org/w/index.php?title=Vendor_lock-in
http://en.wikipedia.org/w/index.php?title=XML_database
http://en.wikipedia.org/w/index.php?title=XQuery
http://en.wikipedia.org/w/index.php?title=Database_connection
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=XQuery
http://en.wikipedia.org/w/index.php?title=Code_injection
http://en.wikipedia.org/w/index.php?title=XQuery
http://en.wikipedia.org/w/index.php?title=Atomic_transaction
http://en.wikipedia.org/w/index.php?title=Java_Community_Process
http://en.wikipedia.org/w/index.php?title=Java_Community_Process
http://en.wikipedia.org/w/index.php?title=Java_Specification_Request
http://en.wikipedia.org/w/index.php?title=Oracle_Corporation
http://en.wikipedia.org/w/index.php?title=IBM
http://en.wikipedia.org/w/index.php?title=BEA_Systems
http://en.wikipedia.org/w/index.php?title=Software_AG
http://en.wikipedia.org/w/index.php?title=Intel
http://en.wikipedia.org/w/index.php?title=Nokia
http://en.wikipedia.org/w/index.php?title=Progress_Software
http://en.wikipedia.org/w/index.php?title=Javadoc
http://en.wikipedia.org/w/index.php?title=Reference_implementation
http://en.wikipedia.org/w/index.php?title=Technology_Compatibility_Kit
http://en.wikipedia.org/w/index.php?title=Java_package
http://xqj.net/javadoc/

XQuery API for Java 158

Functionality
XQJ allows multiple implementations to exist and be used by the same application.
XQJ connections support creating and executing XQuery expressions. Expressions may be updating[12] and may
include full text searches.[13] XQJ represents XQuery expressions using one of the following classes:
• XQExpression [14] – the expression is sent to the XQuery processor every time.
• XQPreparedExpression [15] – the expression is cached and the execution path is pre-determined allowing it

to be executed multiple times in an efficient manner.
XQuery expressions return a result sequence of XDM items which in XQJ are represented through the
XQResultSequence [16] interface. The programmer can use an XQResultSequence [16] to walk over
individual XDM items in the result sequence. Each item in the sequence has XDM type information associated with
it, such as its node type e.g. element(), document-node() or an XDM atomic type such as xs:string,
xs:integer or xs:dateTime. XDM type information in XQJ can be retrieved via the XQItemType [17]

interface.
Atomic XQuery items can be easily cast to Java primitives via XQItemAccessor [18] methods such as
getByte() [19] and getFloat() [20]. Also XQuery items and sequences can be serialized to DOM Node [21],
SAX ContentHandler [22], StAX XMLStreamReader [23] and the generic IO Reader [24] and
InputStream [25] classes.

Examples

Basic Example
The following example illustrates creating a connection to an XML Database, submitting an XQuery expression,
then processing the results in Java. Once all of the results have been processed, the connection is closed to free up all
resources associated with it.

// Create a new connection to an XML database

XQConnection conn = vendorDataSource.getConnection("myUser", "myPassword");

XQExpression expr = conn.createExpression(); // Create a reusable XQuery Expression object

XQResultSequence result = expr.executeQuery(

 "for $n in fn:collection('catalog')//item " +

 "return fn:data($n/name)"); // execute an XQuery expression

// Process the result sequence iteratively

while (result.next()) {

 // Print the current item in the sequence

 System.out.println("Product name: " + result.getItemAsString(null));

}

// Free all resources created by the connection

conn.close();

http://en.wikipedia.org/w/index.php?title=XQuery
http://en.wikipedia.org/w/index.php?title=XQuery
http://xqj.net/javadoc/javax/xml/xquery/XQExpression.html
http://xqj.net/javadoc/javax/xml/xquery/XQPreparedExpression.html
http://en.wikipedia.org/w/index.php?title=XQuery
http://xqj.net/javadoc/javax/xml/xquery/XQResultSequence.html
http://xqj.net/javadoc/javax/xml/xquery/XQResultSequence.html
http://xqj.net/javadoc/javax/xml/xquery/XQItemType.html
http://en.wikipedia.org/w/index.php?title=XQuery
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://xqj.net/javadoc/javax/xml/xquery/XQItemAccessor.html
http://xqj.net/javadoc/javax/xml/xquery/XQItemAccessor.html#getByte()
http://xqj.net/javadoc/javax/xml/xquery/XQItemAccessor.html#getFloat()
http://en.wikipedia.org/w/index.php?title=XQuery
http://en.wikipedia.org/w/index.php?title=Document_Object_Model
http://download.oracle.com/javase/7/docs/api/org/w3c/dom/Node.html
http://en.wikipedia.org/w/index.php?title=Simple_API_for_XML
http://download.oracle.com/javase/7/docs/api/org/xml/sax/ContentHandler.html
http://en.wikipedia.org/w/index.php?title=StAX
http://download.oracle.com/javase/7/docs/api/javax/xml/stream/XMLStreamReader.html
http://download.oracle.com/javase/7/docs/api/java/io/Reader.html
http://download.oracle.com/javase/7/docs/api/java/io/InputStream.html
http://en.wikipedia.org/w/index.php?title=XML_database
http://en.wikipedia.org/w/index.php?title=XQuery
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29

XQuery API for Java 159

Binding a value to an external variable
The following example illustrates how a Java value can be bound to an external variable in an XQuery expression.
Assume that the connection conn already exists

XQExpression expr = conn.createExpression();

// The XQuery expression to be executed

String es = "declare variable $x as xs:integer external;" +

 " for $n in fn:collection('catalog')//item" +

 " where $n/price <= $x" +

 " return fn:data($n/name)";

// Bind a value (21) to an external variable with the QName x

expr.bindInt(new QName("x"), 21, null);

// Execute the XQuery expression

XQResultSequence result = expr.executeQuery(es);

// Process the result (sequence) iteratively

while (result.next()) {

 // Process the result ...

}

Default data type mapping
Mapping between Java and XQuery data types is largely flexible, however the XQJ 1.0 specification does have
default mapping rules mapping data types when they are not specified by the user. These mapping rules bear great
similarities to the mapping rules found in JAXB.
The following table illustrates the default mapping rules for when binding Java values to external variables in
XQuery expressions.

Default conversion rules when mapping from Java data types to XQuery data types

Java Datatype Default XQuery Data Type(s)

boolean xs:boolean

byte xs:byte

byte[] xs:hexBinary

double xs:double

float xs:float

int xs:int

long xs:long

short xs:short

Boolean [26] xs:boolean

Byte [27] xs:byte

Float [28] xs:float

http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=XQuery
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=XQuery
http://en.wikipedia.org/w/index.php?title=Java_Architecture_for_XML_Binding
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=XQuery
http://download.oracle.com/javase/7/docs/api/java/lang/Boolean.html
http://download.oracle.com/javase/7/docs/api/java/lang/Byte.html
http://download.oracle.com/javase/7/docs/api/java/lang/Float.html

XQuery API for Java 160

Double [29] xs:double

Integer [30] xs:int

Long [31] xs:long

Short [32] xs:short

String [33] xs:string

BigDecimal [34] xs:decimal

BigInteger [35] xs:integer

Duration [36] xs:dayTimeDuration if the Duration Object's state is xs:dayTimeDuration

xs:yearMonthDuration if the Duration Object's state is xs:yearMonthDuration

xs:duration if the Duration Object's state is xs:duration

XMLGregorianCalendar [37] xs:date if the XMLGregorianCalendar Object's state is xs:date

xs:dateTime if the XMLGregorianCalendar Object's state is xs:dateTime

xs:gDay if the XMLGregorianCalendar Object's state is xs:gDay

xs:gMonth if the XMLGregorianCalendar Object's state is xs:gMonth

xs:gMonthDay if the XMLGregorianCalendar Object's state is xs:gMonthDay

xs:gYear if the XMLGregorianCalendar Object's state is xs:gYear

xs:gYearMonth if the XMLGregorianCalendar Object's state is xs:gYearMonth

xs:time if the XMLGregorianCalendar Object's state is xs:time

QName [38] xs:QName

Document [39] document-node(element(*, xs:untyped))

DocumentFragment [40] document-node(element(*, xs:untyped))

Element [41] element(*, xs:untyped)

Attr [42] attribute(*, xs:untypedAtomic)

Comment [43] comment()

ProcessingInstruction [44] processing-instruction()

Text [45] text()

http://download.oracle.com/javase/7/docs/api/java/lang/Double.html
http://download.oracle.com/javase/7/docs/api/java/lang/Integer.html
http://download.oracle.com/javase/7/docs/api/java/lang/Long.html
http://download.oracle.com/javase/7/docs/api/java/lang/Short.html
http://download.oracle.com/javase/7/docs/api/java/lang/String.html
http://download.oracle.com/javase/7/docs/api/java/math/BigDecimal.html
http://download.oracle.com/javase/7/docs/api/java/math/BigInteger.html
http://download.oracle.com/javase/7/docs/api/javax/xml/datatype/Duration.html
http://download.oracle.com/javase/7/docs/api/javax/xml/datatype/XMLGregorianCalendar.html
http://download.oracle.com/javase/7/docs/api/javax/xml/namespace/QName.html
http://download.oracle.com/javase/7/docs/api/org/w3c/dom/Document.html
http://download.oracle.com/javase/7/docs/api/org/w3c/dom/DocumentFragment.html
http://download.oracle.com/javase/7/docs/api/org/w3c/dom/Element.html
http://download.oracle.com/javase/7/docs/api/org/w3c/dom/Attr.html
http://download.oracle.com/javase/7/docs/api/org/w3c/dom/Comment.html
http://download.oracle.com/javase/7/docs/api/org/w3c/dom/ProcessingInstruction.html
http://download.oracle.com/javase/7/docs/api/org/w3c/dom/Text.html

XQuery API for Java 161

Known implementations

Native XML databases
The following is a list of Native XML Databases which are known to have XQuery API for Java implementations.
• MarkLogic[46]

• eXist[47]

• BaseX[48]

• Sedna[49]

• Oracle XDB [50][51]

• Tamino[52]

•• TigerLogic

Relational databases
DataDirect provide XQJ adapters for relational databases, by translating XQuery code into SQL on the fly, then
converting SQL result sets into a format suitable for XQJ to process further. The following is a couple of known
implementations.
• Oracle DB (Not XDB)

•• IBM DB2
•• Microsoft SQL Server
•• Sybase ASE
•• Informix
•• MySQL
•• PostgreSQL

Client-side implementations
The following is a list of client-side XQuery processors which provide an XQuery API for Java interface.
•• Saxon XSLT and XQuery processor
• Zorba[53]

•• MXQuery
• Oracle XQuery Processor [54]

References
[1] http:/ / jcp. org/ en/ jsr/ detail?id=225
[2] XQuery 1.0 and XPath 2.0 Data Model (XDM) (http:/ / www. w3. org/ TR/ xpath-datamodel/)
[3] Binding Java Variables (http:/ / www. cfoster. net/ articles/ xqj-tutorial/ binding-java-variables. xml)
[4][4] Querying XML: XQuery, XPath, and SQL/XML in context - Jim Melton and Stephen Buxton. ISBN 978-1558607118
[5] XQJ - XQuery Java API is Completed, Marc Van Cappellen, Zhen Hua Liu, Jim Melton and Maxim Orgiyan (http:/ / www. sigmod. org/

publications/ sigmod-record/ 0912/ p07. article. cappellen. pdf)
[6] IBM and Oracle Submit XQuery API for Java (XQJ) Java Specification Request. (http:/ / xml. coverpages. org/ ni2003-06-12-b. html)
[7] An Early Look at XQuery API for Java (XQJ) - Andrew Eisenberg, IBM and Jim Melton, Oracle (http:/ / www. sigmod. org/ publications/

sigmod-record/ 0406/ JimAndrew. pdf)
[8] The BEA Streaming XQuery Processor (http:/ / www. cfoster. net/ pdf/ reference/ 10. 1. 1. 92. 2337. pdf#page=17)
[9] XQJ Interface for Tamino Native XML Database (http:/ / documentation. softwareag. com/ webmethods/ wmsuites/ wmsuite8-2_ga/

CentraSite/ 8-2-SP1_CentraSite/ dg-xqj/ overview. htm)
[10] JSR-000225 XQuery API for Java (Final Release) (http:/ / jcp. org/ aboutJava/ communityprocess/ final/ jsr225/ index. html)
[11] http:/ / xqj. net/ javadoc/
[12][12] XQuery Update Facility
[13] XQuery Full Text (http:/ / www. w3. org/ TR/ xpath-full-text-10/)
[14] http:/ / xqj. net/ javadoc/ javax/ xml/ xquery/ XQExpression. html

http://en.wikipedia.org/w/index.php?title=XML_database
http://en.wikipedia.org/w/index.php?title=MarkLogic
http://en.wikipedia.org/w/index.php?title=EXist
http://en.wikipedia.org/w/index.php?title=BaseX
http://en.wikipedia.org/w/index.php?title=Sedna_%28database%29
http://en.wikipedia.org/w/index.php?title=Oracle_Database
http://www.oracle.com/technetwork/database-features/xmldb/overview/index.html
http://en.wikipedia.org/w/index.php?title=TigerLogic
http://en.wikipedia.org/w/index.php?title=Progress_Software
http://en.wikipedia.org/w/index.php?title=Adapter_%28computing%29
http://en.wikipedia.org/w/index.php?title=XQuery
http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=Result_set
http://en.wikipedia.org/w/index.php?title=Oracle_Database
http://en.wikipedia.org/w/index.php?title=IBM_DB2
http://en.wikipedia.org/w/index.php?title=Microsoft_SQL_Server
http://en.wikipedia.org/w/index.php?title=Adaptive_Server_Enterprise
http://en.wikipedia.org/w/index.php?title=IBM_Informix
http://en.wikipedia.org/w/index.php?title=MySQL
http://en.wikipedia.org/w/index.php?title=PostgreSQL
http://en.wikipedia.org/w/index.php?title=XQuery
http://en.wikipedia.org/w/index.php?title=Saxon_XSLT
http://en.wikipedia.org/w/index.php?title=Zorba_-_The_XQuery_Processor
http://jcp.org/en/jsr/detail?id=225
http://www.w3.org/TR/xpath-datamodel/
http://www.cfoster.net/articles/xqj-tutorial/binding-java-variables.xml
http://www.sigmod.org/publications/sigmod-record/0912/p07.article.cappellen.pdf
http://www.sigmod.org/publications/sigmod-record/0912/p07.article.cappellen.pdf
http://xml.coverpages.org/ni2003-06-12-b.html
http://www.sigmod.org/publications/sigmod-record/0406/JimAndrew.pdf
http://www.sigmod.org/publications/sigmod-record/0406/JimAndrew.pdf
http://www.cfoster.net/pdf/reference/10.1.1.92.2337.pdf#page=17
http://documentation.softwareag.com/webmethods/wmsuites/wmsuite8-2_ga/CentraSite/8-2-SP1_CentraSite/dg-xqj/overview.htm
http://documentation.softwareag.com/webmethods/wmsuites/wmsuite8-2_ga/CentraSite/8-2-SP1_CentraSite/dg-xqj/overview.htm
http://jcp.org/aboutJava/communityprocess/final/jsr225/index.html
http://xqj.net/javadoc/
http://en.wikipedia.org/w/index.php?title=XQuery_Update_Facility
http://www.w3.org/TR/xpath-full-text-10/
http://xqj.net/javadoc/javax/xml/xquery/XQExpression.html

XQuery API for Java 162

[15] http:/ / xqj. net/ javadoc/ javax/ xml/ xquery/ XQPreparedExpression. html
[16] http:/ / xqj. net/ javadoc/ javax/ xml/ xquery/ XQResultSequence. html
[17] http:/ / xqj. net/ javadoc/ javax/ xml/ xquery/ XQItemType. html
[18] http:/ / xqj. net/ javadoc/ javax/ xml/ xquery/ XQItemAccessor. html
[19] http:/ / xqj. net/ javadoc/ javax/ xml/ xquery/ XQItemAccessor. html#getByte()
[20] http:/ / xqj. net/ javadoc/ javax/ xml/ xquery/ XQItemAccessor. html#getFloat()
[21] http:/ / download. oracle. com/ javase/ 7/ docs/ api/ org/ w3c/ dom/ Node. html
[22] http:/ / download. oracle. com/ javase/ 7/ docs/ api/ org/ xml/ sax/ ContentHandler. html
[23] http:/ / download. oracle. com/ javase/ 7/ docs/ api/ javax/ xml/ stream/ XMLStreamReader. html
[24] http:/ / download. oracle. com/ javase/ 7/ docs/ api/ java/ io/ Reader. html
[25] http:/ / download. oracle. com/ javase/ 7/ docs/ api/ java/ io/ InputStream. html
[26] http:/ / download. oracle. com/ javase/ 7/ docs/ api/ java/ lang/ Boolean. html
[27] http:/ / download. oracle. com/ javase/ 7/ docs/ api/ java/ lang/ Byte. html
[28] http:/ / download. oracle. com/ javase/ 7/ docs/ api/ java/ lang/ Float. html
[29] http:/ / download. oracle. com/ javase/ 7/ docs/ api/ java/ lang/ Double. html
[30] http:/ / download. oracle. com/ javase/ 7/ docs/ api/ java/ lang/ Integer. html
[31] http:/ / download. oracle. com/ javase/ 7/ docs/ api/ java/ lang/ Long. html
[32] http:/ / download. oracle. com/ javase/ 7/ docs/ api/ java/ lang/ Short. html
[33] http:/ / download. oracle. com/ javase/ 7/ docs/ api/ java/ lang/ String. html
[34] http:/ / download. oracle. com/ javase/ 7/ docs/ api/ java/ math/ BigDecimal. html
[35] http:/ / download. oracle. com/ javase/ 7/ docs/ api/ java/ math/ BigInteger. html
[36] http:/ / download. oracle. com/ javase/ 7/ docs/ api/ javax/ xml/ datatype/ Duration. html
[37] http:/ / download. oracle. com/ javase/ 7/ docs/ api/ javax/ xml/ datatype/ XMLGregorianCalendar. html
[38] http:/ / download. oracle. com/ javase/ 7/ docs/ api/ javax/ xml/ namespace/ QName. html
[39] http:/ / download. oracle. com/ javase/ 7/ docs/ api/ org/ w3c/ dom/ Document. html
[40] http:/ / download. oracle. com/ javase/ 7/ docs/ api/ org/ w3c/ dom/ DocumentFragment. html
[41] http:/ / download. oracle. com/ javase/ 7/ docs/ api/ org/ w3c/ dom/ Element. html
[42] http:/ / download. oracle. com/ javase/ 7/ docs/ api/ org/ w3c/ dom/ Attr. html
[43] http:/ / download. oracle. com/ javase/ 7/ docs/ api/ org/ w3c/ dom/ Comment. html
[44] http:/ / download. oracle. com/ javase/ 7/ docs/ api/ org/ w3c/ dom/ ProcessingInstruction. html
[45] http:/ / download. oracle. com/ javase/ 7/ docs/ api/ org/ w3c/ dom/ Text. html
[46] MarkLogic XQJ API (http:/ / xqj. net/ marklogic)
[47] eXist XQJ API (http:/ / xqj. net/ exist)
[48] BaseX XQJ API (http:/ / xqj. net/ basex)
[49] Sedna XQJ API (http:/ / xqj. net/ sedna)
[50] http:/ / www. oracle. com/ technetwork/ database-features/ xmldb/ overview/ index. html
[51] Oracle XML DB Support for XQJ (http:/ / docs. oracle. com/ cd/ E16655_01/ appdev. 121/ e17604/ adx_j_xqjxdb. htm#ADXDK136)
[52] Software AG - Working with the CentraSite XQJ Interface (http:/ / documentation. softwareag. com/ webmethods/ wmsuites/

wmsuite8-2_ga/ CentraSite/ 8-2-SP1_CentraSite/ dg-xqj/ working_xqjdriver. htm)
[53] Zorba 2.5 ships with a long awaited XQJ binding, 14th June 2012 (http:/ / www. zorba-xquery. com/ html/ entry/ 2012/ 06/ 14/ Zorba_25)
[54] Oracle XML Developer's Kit (XDK) provides a standalone XQuery 1.0 processor for use by Java applications. (http:/ / docs. oracle. com/

cd/ E16655_01/ appdev. 121/ e17604/ adx_j_xqj. htm#ADXDK99930)

External links
• Javadoc for XQJ (http:/ / xqj. net/ javadoc/)
• XQJ Tutorial (http:/ / www. cfoster. net/ articles/ xqj-tutorial/)
• Building Bridges from Java to XQuery, Charles Foster. XML Prague 2012 (http:/ / archive. xmlprague. cz/ 2012/

files/ xmlprague-2012-proceedings. pdf#page=197) (Prezi Presentation (http:/ / prezi. com/ lviyahwtaxge/
building-bridges-from-java-to-xquery/))

• Java Integration of XQuery, Hans-Jürgen Rennau. Balisage 2010 (http:/ / www. balisage. net/ Proceedings/ vol5/
html/ Rennau01/ BalisageVol5-Rennau01. html)

• Orbeon Forms using XQJ (http:/ / wiki. orbeon. com/ forms/ doc/ developer-guide/
processors-xquery-generator#TOC-XQuery-processor-implementations)

• Spring Integration XQuery Support (https:/ / github. com/ SpringSource/ spring-integration-extensions/ tree/
master/ spring-integration-xquery)

http://xqj.net/javadoc/javax/xml/xquery/XQPreparedExpression.html
http://xqj.net/javadoc/javax/xml/xquery/XQResultSequence.html
http://xqj.net/javadoc/javax/xml/xquery/XQItemType.html
http://xqj.net/javadoc/javax/xml/xquery/XQItemAccessor.html
http://xqj.net/javadoc/javax/xml/xquery/XQItemAccessor.html#getByte()
http://xqj.net/javadoc/javax/xml/xquery/XQItemAccessor.html#getFloat()
http://download.oracle.com/javase/7/docs/api/org/w3c/dom/Node.html
http://download.oracle.com/javase/7/docs/api/org/xml/sax/ContentHandler.html
http://download.oracle.com/javase/7/docs/api/javax/xml/stream/XMLStreamReader.html
http://download.oracle.com/javase/7/docs/api/java/io/Reader.html
http://download.oracle.com/javase/7/docs/api/java/io/InputStream.html
http://download.oracle.com/javase/7/docs/api/java/lang/Boolean.html
http://download.oracle.com/javase/7/docs/api/java/lang/Byte.html
http://download.oracle.com/javase/7/docs/api/java/lang/Float.html
http://download.oracle.com/javase/7/docs/api/java/lang/Double.html
http://download.oracle.com/javase/7/docs/api/java/lang/Integer.html
http://download.oracle.com/javase/7/docs/api/java/lang/Long.html
http://download.oracle.com/javase/7/docs/api/java/lang/Short.html
http://download.oracle.com/javase/7/docs/api/java/lang/String.html
http://download.oracle.com/javase/7/docs/api/java/math/BigDecimal.html
http://download.oracle.com/javase/7/docs/api/java/math/BigInteger.html
http://download.oracle.com/javase/7/docs/api/javax/xml/datatype/Duration.html
http://download.oracle.com/javase/7/docs/api/javax/xml/datatype/XMLGregorianCalendar.html
http://download.oracle.com/javase/7/docs/api/javax/xml/namespace/QName.html
http://download.oracle.com/javase/7/docs/api/org/w3c/dom/Document.html
http://download.oracle.com/javase/7/docs/api/org/w3c/dom/DocumentFragment.html
http://download.oracle.com/javase/7/docs/api/org/w3c/dom/Element.html
http://download.oracle.com/javase/7/docs/api/org/w3c/dom/Attr.html
http://download.oracle.com/javase/7/docs/api/org/w3c/dom/Comment.html
http://download.oracle.com/javase/7/docs/api/org/w3c/dom/ProcessingInstruction.html
http://download.oracle.com/javase/7/docs/api/org/w3c/dom/Text.html
http://xqj.net/marklogic
http://xqj.net/exist
http://xqj.net/basex
http://xqj.net/sedna
http://www.oracle.com/technetwork/database-features/xmldb/overview/index.html
http://docs.oracle.com/cd/E16655_01/appdev.121/e17604/adx_j_xqjxdb.htm#ADXDK136
http://documentation.softwareag.com/webmethods/wmsuites/wmsuite8-2_ga/CentraSite/8-2-SP1_CentraSite/dg-xqj/working_xqjdriver.htm
http://documentation.softwareag.com/webmethods/wmsuites/wmsuite8-2_ga/CentraSite/8-2-SP1_CentraSite/dg-xqj/working_xqjdriver.htm
http://www.zorba-xquery.com/html/entry/2012/06/14/Zorba_25
http://docs.oracle.com/cd/E16655_01/appdev.121/e17604/adx_j_xqj.htm#ADXDK99930
http://docs.oracle.com/cd/E16655_01/appdev.121/e17604/adx_j_xqj.htm#ADXDK99930
http://xqj.net/javadoc/
http://www.cfoster.net/articles/xqj-tutorial/
http://archive.xmlprague.cz/2012/files/xmlprague-2012-proceedings.pdf#page=197
http://archive.xmlprague.cz/2012/files/xmlprague-2012-proceedings.pdf#page=197
http://prezi.com/lviyahwtaxge/building-bridges-from-java-to-xquery/
http://prezi.com/lviyahwtaxge/building-bridges-from-java-to-xquery/
http://www.balisage.net/Proceedings/vol5/html/Rennau01/BalisageVol5-Rennau01.html
http://www.balisage.net/Proceedings/vol5/html/Rennau01/BalisageVol5-Rennau01.html
http://wiki.orbeon.com/forms/doc/developer-guide/processors-xquery-generator#TOC-XQuery-processor-implementations
http://wiki.orbeon.com/forms/doc/developer-guide/processors-xquery-generator#TOC-XQuery-processor-implementations
https://github.com/SpringSource/spring-integration-extensions/tree/master/spring-integration-xquery
https://github.com/SpringSource/spring-integration-extensions/tree/master/spring-integration-xquery

XQuery API for Java 163

• XQS: XQuery for Scala (Sits on top of XQJ) (https:/ / github. com/ fancellu/ xqs)

ODBC
In computing, ODBC (Open Database Connectivity) is a standard programming language middleware API for
accessing database management systems (DBMS). The designers of ODBC aimed to make it independent of
database systems and operating systems; an application written using ODBC can be ported to other platforms, both
on the client and server side, with few changes to the data access code.
ODBC accomplishes DBMS independence by using an ODBC driver as a translation layer between the application
and the DBMS. The application uses ODBC functions through an ODBC driver manager with which it is linked,
and the driver passes the query to the DBMS. An ODBC driver can be thought of as analogous to a printer or other
driver, providing a standard set of functions for the application to use, and implementing DBMS-specific
functionality. An application that can use ODBC is referred to as "ODBC-compliant". Any ODBC-compliant
application can access any DBMS for which a driver is installed. Drivers exist for all major DBMSs, many other data
sources like address book systems and Microsoft Excel, and even for text or CSV files.
ODBC was originally developed by Microsoft during the early 1990s, and became the basis for the Call Level
Interface (CLI) standardized by SQL Access Group in the Unix and mainframe world. ODBC retained a number of
features that were removed as part of the CLI effort. Full ODBC was later ported back to those platforms, and
became a de facto standard considerably better known than CLI. The CLI remains similar to ODBC, and applications
can be ported from one platform to the other with few changes.

History

Prior to ODBC
The introduction of the mainframe-based relational database during the 1970s led to a proliferation of data access
methods. Generally these systems operated hand-in-hand with a simple command processor that allowed the user to
type in English-like commands, and receive output. The best-known examples are SEQUEL from IBM and QUEL
from the Ingres project. These systems may or may not allow other applications to access the data directly, and those
that did used a wide variety of methodologies. The introduction of SQL aimed to solve the problem of language
standardization, although substantial differences in implementation remained.
Additionally, since the SQL language had only rudimentary programming features, it was often desired to use SQL
within a program written in another language, say Fortran or C. This led to the concept of Embedded SQL, which
allowed SQL code to be "embedded" within another language. For instance, a SQL statement like SELECT *
FROM city could be inserted as text within C source code, and during compilation it would be converted into a
custom format that directly called a function within a library that would pass the statement into the SQL system.
Results returned from the statements would be interpreted back into C data formats like char * using similar
library code.
There were a number of problems with the Embedded SQL approach. Like the different varieties of SQL, the
Embedded SQL's that used them varied widely, not only from platform to platform, but even across languages on a
single platform - a system that allowed calls into IBM's DB2 would look entirely different than one that called into
their own SQL/DSWikipedia:Disputed statement. Another key problem to the Embedded SQL concept was that the
SQL code could only be changed in the program's source code, so that even small changes to the query required
considerable programmer effort to modify. The SQL market referred to this as "static SQL", as opposed to "dynamic
SQL" which could be changed at any time - like the command-line interfaces that shipped with almost all SQL
systems, or a programming interface that left the SQL as plain text until it was called. Dynamic SQL systems

https://github.com/fancellu/xqs
http://en.wikipedia.org/w/index.php?title=Computing
http://en.wikipedia.org/w/index.php?title=Programming_language
http://en.wikipedia.org/w/index.php?title=Middleware
http://en.wikipedia.org/w/index.php?title=Application_programming_interface
http://en.wikipedia.org/w/index.php?title=Database_management_system
http://en.wikipedia.org/w/index.php?title=Operating_system
http://en.wikipedia.org/w/index.php?title=Address_book
http://en.wikipedia.org/w/index.php?title=Microsoft_Excel
http://en.wikipedia.org/w/index.php?title=Comma-separated_values
http://en.wikipedia.org/w/index.php?title=Microsoft
http://en.wikipedia.org/w/index.php?title=Call_Level_Interface
http://en.wikipedia.org/w/index.php?title=Call_Level_Interface
http://en.wikipedia.org/w/index.php?title=SQL_Access_Group
http://en.wikipedia.org/w/index.php?title=Unix
http://en.wikipedia.org/w/index.php?title=Mainframe_computer
http://en.wikipedia.org/w/index.php?title=De_facto_standard
http://en.wikipedia.org/w/index.php?title=Mainframe_computer
http://en.wikipedia.org/w/index.php?title=SEQUEL
http://en.wikipedia.org/w/index.php?title=IBM
http://en.wikipedia.org/w/index.php?title=QUEL_query_languages
http://en.wikipedia.org/w/index.php?title=Ingres_%28database%29
http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=Fortran
http://en.wikipedia.org/w/index.php?title=C_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Embedded_SQL
http://en.wikipedia.org/w/index.php?title=Compiler
http://en.wikipedia.org/w/index.php?title=Library_%28computing%29
http://en.wikipedia.org/w/index.php?title=IBM
http://en.wikipedia.org/w/index.php?title=IBM_DB2
http://en.wikipedia.org/w/index.php?title=IBM_SQL/DS
http://en.wikipedia.org/wiki/Disputed_statement
http://en.wikipedia.org/w/index.php?title=Command-line_interface

ODBC 164

became a major focus for SQL vendors during the 1980s.
Older mainframe databases, and the newer microcomputer based systems that were based on them, generally did not
have a SQL-like command processor between the user and the database engine. Instead, the data was accessed
directly by the program - a programming library in the case of large mainframe systems, or a command line interface
or interactive forms system in the case of dBASE and similar applications. Data from dBASE could not generally be
accessed directly by other programs running on the machine. Those programs may be given a way to access this
data, often through libraries, but it would not work with any other database engine, or even different databases in the
same engine. In effect, all such systems were static, which presented considerable problems.

Early efforts
By the mid-1980s the rapid improvement in microcomputers, and especially the introduction of the graphical user
interface and data-rich application programs like Lotus 1-2-3 led to an increasing interest in using personal
computers as the client-side platform of choice in client-server computing. Under this model, large mainframes and
minicomputers would be used primarily to serve up data over local area networks to microcomputers that would
interpret, display and manipulate that data. For this model to work, a data access standard was a requirement - in the
mainframe world it was highly likely that all of the computers in a shop were from a single vendor and clients were
computer terminals talking directly to them, but in the micro world there was no such standardization and any client
might access any server using any networking system.
By the late 1980s there were a number of efforts underway to provide an abstraction layer for this purpose. Some of
these were mainframe related, designed to allow programs running on those machines to translate between the
variety of SQL's and provide a single common interface which could then be called by other mainframe or
microcomputer programs. These solutions included IBM's Distributed Relational Database Architecture (DRDA)
and Apple Computer's Data Access Language. Much more common, however, were systems that ran entirely on
microcomputers, including a complete protocol stack that included any required networking or file translation
support.
One of the early examples of such a system was Lotus Development's DataLens, initially known as Blueprint.
Blueprint, developed for 1-2-3, supported a variety of data sources, including SQL/DS, DB2, FOCUS and a variety
of similar mainframe systems, as well as microcomputer systems like dBase and the early Microsoft/Ashton-Tate
efforts that would eventually develop into Microsoft SQL Server.[1] Unlike the later ODBC, Blueprint was a purely
code-based system, lacking anything approximating a command language like SQL. Instead, programmers used data
structures to store the query information, constructing a query by linking many of these structures together. Lotus
referred to these compound structures as "query trees".[2]

Around the same time, an industry team including members from Sybase, Tandem Computers and Microsoft were
working on a standardized dynamic SQL concept. Much of the system was based on Sybase's DB-Library system,
with the Sybase-specific sections removed and several additions to support other platforms.[3] DB-Library was aided
by an industry-wide move from library systems that were tightly linked to a particular language, to library systems
that were provided by the operating system and required the languages on that platform to conform to its standards.
This meant that a single library could be used with (potentially) any programming language on a given platform.
The first draft of the Microsoft Data Access API was published in April 1989, about the same time as Lotus'
announcement of Blueprint.[4] In spite of Blueprint's great lead - it was running when MSDA was still a paper
project - Lotus eventually joined the MSDA efforts as it became clear that SQL would become the de facto database
standard.[2] After considerable industry input, in the summer of 1989 the standard became SQL Connectivity, or
SQLC for short,.[5]

http://en.wikipedia.org/w/index.php?title=Microcomputer
http://en.wikipedia.org/w/index.php?title=Command_line_interface
http://en.wikipedia.org/w/index.php?title=DBASE
http://en.wikipedia.org/w/index.php?title=Graphical_user_interface
http://en.wikipedia.org/w/index.php?title=Graphical_user_interface
http://en.wikipedia.org/w/index.php?title=Application_program
http://en.wikipedia.org/w/index.php?title=Lotus_1-2-3
http://en.wikipedia.org/w/index.php?title=Client-server
http://en.wikipedia.org/w/index.php?title=Minicomputer
http://en.wikipedia.org/w/index.php?title=Local_area_network
http://en.wikipedia.org/w/index.php?title=Computer_terminal
http://en.wikipedia.org/w/index.php?title=Distributed_Relational_Database_Architecture
http://en.wikipedia.org/w/index.php?title=Apple_Computer
http://en.wikipedia.org/w/index.php?title=Data_Access_Language
http://en.wikipedia.org/w/index.php?title=Protocol_stack
http://en.wikipedia.org/w/index.php?title=Lotus_Development
http://en.wikipedia.org/w/index.php?title=Lotus_DataLens
http://en.wikipedia.org/w/index.php?title=FOCUS
http://en.wikipedia.org/w/index.php?title=DBase
http://en.wikipedia.org/w/index.php?title=Microsoft_SQL_Server
http://en.wikipedia.org/w/index.php?title=Data_structure
http://en.wikipedia.org/w/index.php?title=Data_structure
http://en.wikipedia.org/w/index.php?title=Sybase
http://en.wikipedia.org/w/index.php?title=Tandem_Computers
http://en.wikipedia.org/w/index.php?title=Operating_system

ODBC 165

SAG and CLI
In 1988 a number of vendors, mostly from the Unix and database communities, formed the SQL Access Group
(SAG) in an effort to produce a single basic standard for the SQL language. At the first meeting there was
considerable debate over whether or not the effort should work solely on the SQL language itself, or attempt a wider
standardization which included a dynamic SQL language-embedding system as well, what they called a Call Level
Interface (CLI).[6] While attending the meeting with an early draft of what was then still known as MS Data Access,
Kyle Geiger of Microsoft invited Jeff Balboni and Larry Barnes of Digital Equipment Corporation (DEC) to join the
SQLC meetings as well. SQLC was a potential solution to the call for the CLI, which was being led by DEC.
The new SQLC "gang of four", MS, Lotus, DEC and Sybase, brought an updated version of SQLC to the next SAG
meeting in June 1990.[7] The SAG responded by opening the standard effort to any competing design, but of the
many proposals, only Oracle Corp had a system that presented serious competition. In the end, SQLC won the votes
and became the draft standard, but only after large portions of the API were removed - the standards document was
trimmed from 120 pages to 50 during this time. It was also during this period that the name Call Level Interface was
formally adopted.[7] In 1995 SQL/CLI became part of the international SQL standard, ISO/IEC 9075-3.[8] The SAG
itself was taken over by the X/Open group in 1996, and, over time, became part of The Open Group's Common
Application Environment.
MS continued working with the original SQLC standard, retaining many of the advanced features that were removed
from the CLI version. These included features like scrollable cursors, and metadata information queries. The
commands in the API were split into groups; the Core group was identical to the CLI, the Level 1 extensions were
commands that would be easy to implement in drivers, while Level 2 commands contained the more advanced
features like cursors. A proposed standard was released in December 1991, and industry input was gathered and
worked into the system through 1992, resulting in yet another name change to ODBC.[9]

JET and ODBC
During this time, Microsoft was in the midst of developing their Jet database system. Jet combined three primary
subsystems; an ISAM-based database engine (also known as "Jet", confusingly), a C-based interface allowing
applications to access that data, and a selection of driver DLLs that allowed the same C interface to redirect input
and output to other ISAM-based databases, like Paradox and xBase. Jet allowed programmers to use a single set of
calls to access common microcomputer databases in a fashion similar to Blueprint (by this point known as
DataLens). However, Jet did not use SQL; like DataLens, the interface was in C and consisted of data structures and
function calls.
The SAG standardization efforts presented an opportunity for Microsoft to adapt their Jet system to the new CLI
standard. This would not only make Windows a premier platform for CLI development, but also allow users to use
SQL to access both Jet and other databases as well. What was missing was the SQL parser that could convert those
calls from their text form into the C-interface used in Jet. To solve this, MS partnered with PageAhead Software to
use their existing query processor, "SIMBA". SIMBA was used as a parser above Jet's C library, turning Jet into an
SQL database. And because Jet could forward those C-based calls to other databases, this also allowed SIMBA to
query other systems. Microsoft included drivers for Excel to turn its spreadsheet documents into SQL-accessible
database tables.

Release and continued development
ODBC 1.0 was released in September 1992. At the time, there was little direct support for SQL databases (as
opposed to ISAM), and early drivers were noted for poor performance. Some of this was unavoidable due to the path
that the calls took through the Jet-based stack; ODBC calls to SQL databases were first converted from SIMBA's
SQL dialect to Jet's internal C-based format, then passed to a driver for conversion back into SQL calls for the
database. Digital Equipment and Oracle both contracted Simba to develop drivers for their databases as well.[10]

http://en.wikipedia.org/w/index.php?title=Unix
http://en.wikipedia.org/w/index.php?title=SQL_Access_Group
http://en.wikipedia.org/w/index.php?title=Call_Level_Interface
http://en.wikipedia.org/w/index.php?title=Call_Level_Interface
http://en.wikipedia.org/w/index.php?title=Digital_Equipment_Corporation
http://en.wikipedia.org/w/index.php?title=Oracle_Corp
http://en.wikipedia.org/w/index.php?title=X/Open
http://en.wikipedia.org/w/index.php?title=The_Open_Group
http://en.wikipedia.org/w/index.php?title=Common_Application_Environment
http://en.wikipedia.org/w/index.php?title=Common_Application_Environment
http://en.wikipedia.org/w/index.php?title=Cursor_%28databases%29%23Scrollable_cursors
http://en.wikipedia.org/w/index.php?title=Metadata
http://en.wikipedia.org/w/index.php?title=Microsoft_Jet_Database_Engine
http://en.wikipedia.org/w/index.php?title=ISAM
http://en.wikipedia.org/w/index.php?title=Dynamic-link_library
http://en.wikipedia.org/w/index.php?title=Paradox_%28database%29
http://en.wikipedia.org/w/index.php?title=XBase
http://en.wikipedia.org/w/index.php?title=Data_structure
http://en.wikipedia.org/w/index.php?title=Simba_Technologies
http://en.wikipedia.org/w/index.php?title=Digital_Equipment
http://en.wikipedia.org/w/index.php?title=Oracle_Corporation

ODBC 166

Meanwhile the CLI standard effort dragged on, and it was not until March 1995 that the definitive version was
finalized. By this time Microsoft had already granted Visigenic Software a source code license to develop ODBC on
non-Windows platforms. Visigenic ported ODBC to a wide variety of Unix platforms, where ODBC quickly became
the de facto standard.[11] "Real" CLI is rare today. The two systems remain similar, and many applications can be
ported from ODBC to CLI with few or no changes.[12]

Over time, database vendors took over the driver interfaces and provided direct links to their products. Skipping the
intermediate conversions to and from Jet or similar wrappers often resulted in higher performance. However, by this
time Microsoft had changed focus to their OLE DB concept, which provided direct access to a wider variety of data
sources from address books to text files. Several new systems followed which further turned their attention from
ODBC, including DAO, ADO and ADO.net, which interacted more or less with ODBC over their lifetimes.
As Microsoft turned its attention away from working directly on ODBC, the Unix world was increasingly embracing
it. This was propelled by two changes within the market, the introduction of GUIs like GNOME that provided the
need for access to these sources in non-text form, and the emergence of open software database systems like
PostgreSQL and MySQL, initially under Unix. The later adoption of ODBC by Apple for Mac OS X 10.4 using the
standard Unix-side iODBC package further cemented ODBC as the standard for cross-platform data access.
Sun Microsystems used the ODBC system as the basis for their own open standard, JDBC. In most ways, JDBC can
be considered a version of ODBC for the Java programming language as opposed to C. JDBC-to-ODBC "bridges"
allow JDBC programs to access data sources through ODBC drivers on platforms lacking a native JDBC driver,
although these are now relatively rare.

ODBC today
ODBC remains largely universal today, with drivers available for most platforms and most databases. It is not
uncommon to find ODBC drivers for database engines that are meant to be embedded, like SQLite, as a way to allow
existing tools to act as front-ends to these engines for testing and debugging.[13]

However, the rise of thin client computing using HTML as an intermediate format has reduced the need for ODBC.
Many web development platforms contain direct links to target databases - MySQL being particularly common. In
these scenarios, there is no direct client-side access nor multiple client software systems to support, everything goes
through the programmer-supplied HTML application. The virtualization that ODBC offers is no longer a strong
requirement, and development of ODBC is no longer as active as it once was.

Version history
Version history:
•• 1.0: released in September 1992
•• 2.0: ca 1994
•• 2.5
• 3.0: ca 1995, John Goodson of Intersolv and Frank Pellow and Paul Cotton of IBM provided significant input to

OBDC 3.0[14]

•• 3.5: ca 1997
•• 3.8: ca 2009, with Windows 7

http://en.wikipedia.org/w/index.php?title=Visigenic_Software
http://en.wikipedia.org/w/index.php?title=Source_code
http://en.wikipedia.org/w/index.php?title=OLE_DB
http://en.wikipedia.org/w/index.php?title=Address_book
http://en.wikipedia.org/w/index.php?title=Jet_Data_Access_Objects
http://en.wikipedia.org/w/index.php?title=ActiveX_Data_Objects
http://en.wikipedia.org/w/index.php?title=ADO.net
http://en.wikipedia.org/w/index.php?title=GNOME
http://en.wikipedia.org/w/index.php?title=Open_software
http://en.wikipedia.org/w/index.php?title=PostgreSQL
http://en.wikipedia.org/w/index.php?title=MySQL
http://en.wikipedia.org/w/index.php?title=Mac_OS_X_10.4
http://en.wikipedia.org/w/index.php?title=IODBC
http://en.wikipedia.org/w/index.php?title=Sun_Microsystems
http://en.wikipedia.org/w/index.php?title=JDBC
http://en.wikipedia.org/w/index.php?title=Java_programming_language
http://en.wikipedia.org/w/index.php?title=SQLite
http://en.wikipedia.org/w/index.php?title=Thin_client
http://en.wikipedia.org/w/index.php?title=HTML

ODBC 167

Drivers and Managers

Drivers
ODBC is based on the device driver model, where the driver encapsulates the logic needed to convert a standard set
of commands and functions into the specific calls required by the underlying system. For instance, a printer driver
presents a standard set of printing commands, the API, to applications using the printing system. Calls made to those
APIs are converted by the driver into the format used by the actual hardware, say PostScript or PCL.
In the case of ODBC, the drivers encapsulate a number of functions that can be broken down into several broad
categories. One set of functions is primarily concerned with finding, connecting to and disconnecting from the
DBMS that driver talks to. A second set is used to send SQL commands from the ODBC system to the DBMS,
converting or interpreting any commands that are not supported internally. For instance, a DBMS that does not
support cursors can emulate this functionality in the driver. Finally, another set of commands, mostly used internally,
is used to convert data from the DBMS's internal formats to a set of standardized ODBC formats, which are based on
the C language formats.
An ODBC driver enables an ODBC-compliant application to use a data source, normally a DBMS. Some
non-DBMS drivers exist, for such data sources as CSV files, by implementing a small DBMS inside the driver itself.
ODBC drivers exist for most DBMSs, including Oracle, PostgreSQL, MySQL, Microsoft SQL Server (but not for
the Compact aka CE edition), Sybase ASE, and DB2. Because different technologies have different capabilities,
most ODBC drivers do not implement all functionality defined in the ODBC standard. Some drivers offer extra
functionality not defined by the standard.

Driver Manager
Device drivers are normally enumerated, set up and managed by a separate Manager layer, which may provide
additional functionality. For instance, printing systems often include functionality to provide spooling functionality
on top of the drivers, providing print spooling for any supported printer.
In ODBC the Driver Manager (DM) provides these features. The DM can enumerate the installed drivers and present
this as a list, often in a GUI-based form.
But more important to the operation of the ODBC system is the DM's concept of Data Source Names, or DSN.
DSNs collect additional information needed to connect to a particular data source, as opposed to the DBMS itself.
For instance, the same MySQL driver can be used to connect to any MySQL server, but the connection information
to connect to a local private server is different than the information needed to connect to an internet-hosted public
server. The DSN stores this information in a standardized format, and the DM provides this to the driver during
connection requests. The DM also includes functionality to present a list of DSNs using human readable names, and
to select them at run-time to connect to different resources.
The DM also includes the ability to save partially complete DSN's, with code and logic to ask the user for any
missing information at runtime. For instance, a DSN can be created without a required password. When an ODBC
application attempts to connect to the DBMS using this DSN, the system will pause and ask the user to provide the
password before continuing. This frees the application developer from having to create this sort of code, as well as
having to know which questions to ask. All of this is included in the driver and the DSNs.

http://en.wikipedia.org/w/index.php?title=Device_driver
http://en.wikipedia.org/w/index.php?title=Printer_driver
http://en.wikipedia.org/w/index.php?title=PostScript
http://en.wikipedia.org/w/index.php?title=Printer_Command_Language
http://en.wikipedia.org/w/index.php?title=Comma-separated_values
http://en.wikipedia.org/w/index.php?title=Oracle_database
http://en.wikipedia.org/w/index.php?title=PostgreSQL
http://en.wikipedia.org/w/index.php?title=MySQL
http://en.wikipedia.org/w/index.php?title=Microsoft_SQL_Server
http://en.wikipedia.org/w/index.php?title=SQL_Server_Compact
http://en.wikipedia.org/w/index.php?title=Adaptive_Server_Enterprise
http://en.wikipedia.org/w/index.php?title=IBM_DB2
http://en.wikipedia.org/w/index.php?title=Spooling
http://en.wikipedia.org/w/index.php?title=MySQL

ODBC 168

Bridging configurations
A bridge is a special kind of driver: a driver that uses another driver-based technology.

JDBC-ODBC bridges
A JDBC-ODBC bridge consists of a JDBC driver which employs an ODBC driver to connect to a target database.
This driver translates JDBC method calls into ODBC function calls. Programmers usually use such a bridge when a
particular database lacks a JDBC driver. Sun Microsystems included one such bridge in the JVM, but viewed it as a
stop-gap measure while few JDBC drivers existed. Sun never intended its bridge for production environments, and
generally recommends against its use. As of 2008[15] independent data-access vendors deliver JDBC-ODBC bridges
which support current standards for both mechanisms, and which far outperform the JVM built-in.[citation needed]

ODBC-JDBC bridges
An ODBC-JDBC bridge consists of an ODBC driver which uses the services of a JDBC driver to connect to a
database. This driver translates ODBC function-calls into JDBC method-calls. Programmers usually use such a
bridge when they lack an ODBC driver for a particular database but have access to a JDBC driver.

OLE DB
Microsoft provides an OLE DB-ODBC bridge for simplifying development in COM aware languages (e.g. Visual
Basic). This bridge forms part of the MDAC system component bundle, together with other database drivers.

References
Citations
[1] Evan McGlinn, Blueprint Lets 1-2-3 Access Outside Data" (http:/ / books. google. ca/ books?id=6D4EAAAAMBAJ), InfoWorld, 4 April

1988, p. 1, 69
[2][2] Geiger 1995, p. 65.
[3][3] Geiger 1995, p. 86-87.
[4][4] Geiger 1995, p. 56.
[5][5] Geiger 1995, p. 106.
[6][6] Geiger 1995, p. 165.
[7][7] Geiger 1995, p. 186-187.
[8][8] ISO/IEC 9075-3 -- Information technology -- Database languages -- SQL -- Part 3: Call-Level Interface (SQL/CLI)
[9][9] Geiger 1995, p. 203.
[10] "Our History" (http:/ / www. simba. com/ simba-history. htm), Simba Technologies
[11] Roger Sippl, "SQL Access Group's Call-Level Interface" (http:/ / www. drdobbs. com/ sql-access-groups-call-level-interface/ 184410032),

Dr. Dobbs, 1 February 1996
[12] "Similarities and differences between ODBC and CLI" (http:/ / publib. boulder. ibm. com/ infocenter/ iisclzos/ v9r5/ index. jsp?topic=/ com.

ibm. swg. im. iis. fed. classic. clientsref. doc/ topics/ iiyfcodbcclisimdiff. html), InfoSphere Classic documentation, IBM, 26 September 2008
[13] Christian Werner, "SQLite ODBC Driver" (http:/ / www. ch-werner. de/ sqliteodbc/)
[14][14] Microsoft Corporation. Microsoft ODBC 3.0 Programmer's Reference and SDK Guide, Volume 1. Microsoft Press. February 1997.

(ISBN13: 9781572315167)
[15] http:/ / en. wikipedia. org/ w/ index. php?title=ODBC& action=edit

Bibliography
• Kyle Geiger, "Inside ODBC" (http:/ / books. google. ca/ books?id=G-ZQAAAAMAAJ&), Microsoft Press, 1995

http://en.wikipedia.org/w/index.php?title=JDBC-ODBC_Bridge
http://en.wikipedia.org/w/index.php?title=JDBC_driver
http://en.wikipedia.org/w/index.php?title=Method_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Sun_Microsystems
http://en.wikipedia.org/w/index.php?title=JVM
http://en.wikipedia.org/w/index.php?title=ODBC&action=edit
http://en.wikipedia.org/wiki/Citation_needed
http://en.wikipedia.org/w/index.php?title=JDBC_driver%23Type_1_Driver_-_JDBC-ODBC_bridge
http://en.wikipedia.org/w/index.php?title=OLE_DB
http://en.wikipedia.org/w/index.php?title=Visual_Basic
http://en.wikipedia.org/w/index.php?title=Visual_Basic
http://en.wikipedia.org/w/index.php?title=MDAC
http://en.wikipedia.org/w/index.php?title=System_component_bundle
http://books.google.ca/books?id=6D4EAAAAMBAJ
http://www.simba.com/simba-history.htm
http://www.drdobbs.com/sql-access-groups-call-level-interface/184410032
http://publib.boulder.ibm.com/infocenter/iisclzos/v9r5/index.jsp?topic=/com.ibm.swg.im.iis.fed.classic.clientsref.doc/topics/iiyfcodbcclisimdiff.html
http://publib.boulder.ibm.com/infocenter/iisclzos/v9r5/index.jsp?topic=/com.ibm.swg.im.iis.fed.classic.clientsref.doc/topics/iiyfcodbcclisimdiff.html
http://www.ch-werner.de/sqliteodbc/
http://en.wikipedia.org/w/index.php?title=ODBC&action=edit
http://books.google.ca/books?id=G-ZQAAAAMAAJ&

ODBC 169

External links
• Microsoft ODBC Overview (http:/ / support. microsoft. com/ kb/ 110093)
• List of ODBC Drivers at databasedrivers.com (http:/ / www. databasedrivers. com/ odbc/)
• List of ODBC Drivers at SQLSummit.com (http:/ / www. SQLSummit. com/ ODBCVend. htm)
• OS400 and i5OS ODBC Administration (http:/ / publib. boulder. ibm. com/ infocenter/ iseries/ v5r3/ topic/ rzaii/

rzaiiodbcadm. htm)
• Presentation slides from www.roth.net (http:/ / www. roth. net/ perl/ odbc/ conf/ sld002. htm)
• Early ODBC White Paper (http:/ / www. openlinksw. com/ info/ docs/ odbcwhp/ tableof. htm)
• Microsoft ODBC & Data Access APIs History Article (http:/ / blogs. msdn. com/ data/ archive/ 2006/ 12/ 05/

data-access-api-of-the-day-part-i. aspx)

Query language
Query languages are computer languages used to make queries into databases and information systems.
Broadly, query languages can be classified according to whether they are database query languages or information
retrieval query languages. The difference is that a database query language attempts to give factual answers to factual
questions, while an information retrieval query language attempts to find documents containing information that is
relevant to an area of inquiry.
Examples include:
• .QL is a proprietary object-oriented query language for querying relational databases; successor of Datalog;
• PL/SQL is Oracle Corporation's procedural extension language for SQL and the Oracle relational database.
• Contextual Query Language (CQL) a formal language for representing queries to information retrieval systems

such as web indexes or bibliographic catalogues.
• CQLF (CODASYL Query Language, Flat) is a query language for CODASYL-type databases;
• Concept-Oriented Query Language (COQL) is used in the concept-oriented model (COM). It is based on a novel

data modeling construct, concept, and uses such operations as projection and de-projection for multi-dimensional
analysis, analytical operations and inference;

• DMX is a query language for Data Mining models;
• Datalog is a query language for deductive databases;
• F-logic is a declarative object-oriented language for deductive databases and knowledge representation.
• Gellish English is a language that can be used for queries in Gellish English Databases, for dialogues (requests

and responses) as well as for information modeling and knowledge modeling;[1]

• HTSQL is a query language that translates HTTP queries to SQL;
• ISBL is a query language for PRTV, one of the earliest relational database management systems;
• LINQ query-expressions is a way to query various data sources from .NET languages
• LDAP is an application protocol for querying and modifying directory services running over TCP/IP;
• MQL is a cheminformatics query language for a substructure search allowing beside nominal properties also

numerical properties;
• MDX is a query language for OLAP databases;
• OQL is Object Query Language;
• OCL (Object Constraint Language). Despite its name, OCL is also an object query language and an OMG

standard;
• OPath, intended for use in querying WinFS Stores;
• OttoQL, intended for querying tables, XML, and databases;

http://support.microsoft.com/kb/110093
http://www.databasedrivers.com/odbc/
http://www.SQLSummit.com/ODBCVend.htm
http://publib.boulder.ibm.com/infocenter/iseries/v5r3/topic/rzaii/rzaiiodbcadm.htm
http://publib.boulder.ibm.com/infocenter/iseries/v5r3/topic/rzaii/rzaiiodbcadm.htm
http://www.roth.net/perl/odbc/conf/sld002.htm
http://www.openlinksw.com/info/docs/odbcwhp/tableof.htm
http://blogs.msdn.com/data/archive/2006/12/05/data-access-api-of-the-day-part-i.aspx
http://blogs.msdn.com/data/archive/2006/12/05/data-access-api-of-the-day-part-i.aspx
http://en.wikipedia.org/w/index.php?title=Computer_language
http://en.wikipedia.org/w/index.php?title=Information_system
http://en.wikipedia.org/w/index.php?title=Information_retrieval_query_language
http://en.wikipedia.org/w/index.php?title=Information_retrieval_query_language
http://en.wikipedia.org/w/index.php?title=.QL
http://en.wikipedia.org/w/index.php?title=PL/SQL
http://en.wikipedia.org/w/index.php?title=Oracle
http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=Oracle_relational_database
http://en.wikipedia.org/w/index.php?title=Contextual_Query_Language
http://en.wikipedia.org/w/index.php?title=Information_retrieval
http://en.wikipedia.org/w/index.php?title=CODASYL
http://en.wikipedia.org/w/index.php?title=Concept-Oriented_Query_Language
http://en.wikipedia.org/w/index.php?title=Data_modeling
http://en.wikipedia.org/w/index.php?title=Data_Mining_Extensions
http://en.wikipedia.org/w/index.php?title=Data_Mining
http://en.wikipedia.org/w/index.php?title=Datalog
http://en.wikipedia.org/w/index.php?title=Deductive_database
http://en.wikipedia.org/w/index.php?title=F-logic
http://en.wikipedia.org/w/index.php?title=Deductive_database
http://en.wikipedia.org/w/index.php?title=Knowledge_representation
http://en.wikipedia.org/w/index.php?title=Gellish_English
http://en.wikipedia.org/w/index.php?title=Knowledge_modeling
http://en.wikipedia.org/w/index.php?title=HTSQL
http://en.wikipedia.org/w/index.php?title=HTTP
http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=ISBL
http://en.wikipedia.org/w/index.php?title=PRTV
http://en.wikipedia.org/w/index.php?title=LINQ
http://en.wikipedia.org/w/index.php?title=.NET_Framework
http://en.wikipedia.org/w/index.php?title=LDAP
http://en.wikipedia.org/w/index.php?title=Application_protocol
http://en.wikipedia.org/w/index.php?title=Directory_services
http://en.wikipedia.org/w/index.php?title=TCP/IP
http://en.wikipedia.org/w/index.php?title=Molecular_Query_Language
http://en.wikipedia.org/w/index.php?title=Cheminformatics
http://en.wikipedia.org/w/index.php?title=Substructure_search
http://en.wikipedia.org/w/index.php?title=MultiDimensional_eXpressions
http://en.wikipedia.org/w/index.php?title=OLAP
http://en.wikipedia.org/w/index.php?title=Object_Query_Language
http://en.wikipedia.org/w/index.php?title=Object_Constraint_Language
http://en.wikipedia.org/w/index.php?title=Object_Management_Group
http://en.wikipedia.org/w/index.php?title=OPath
http://en.wikipedia.org/w/index.php?title=WinFS
http://en.wikipedia.org/w/index.php?title=OttoQL
http://en.wikipedia.org/w/index.php?title=XML

Query language 170

• Poliqarp Query Language is a special query language designed to analyze annotated text. Used in the Poliqarp
search engine;

• QUEL is a relational database access language, similar in most ways to SQL;
• RDQL is a RDF query language;
• SMARTS is the cheminformatics standard for a substructure search;
• SPARQL is a query language for RDF graphs;
• SPL is a search language for machine-generated big data, based upon Unix Piping and SQL.
• SQL is a well known query language and Data Manipulation Language for relational databases;
• SuprTool is a proprietary query language for SuprTool, a database access program used for accessing data in

Image/SQL (formerly TurboIMAGE) and Oracle databases;
• TMQL Topic Map Query Language is a query language for Topic Maps;
• Tutorial D is a query language for truly relational database management systems (TRDBMS);
• XQuery is a query language for XML data sources;
• XPath is a declarative language for navigating XML documents;
• XSPARQL is an integrated query language combining XQuery with SPARQL to query both XML and RDF data

sources at once;
• YQL is an SQL-like query language created by Yahoo!

References
[1] http:/ / gellish. wiki. sourceforge. net/ Querying+ a+ Gellish+ English+ database

Query optimization
Query optimization is a function of many relational database management systems. The query optimizer attempts
to determine the most efficient way to execute a given query by considering the possible query plans.
Generally, the query optimizer cannot be accessed directly by users: once queries are submitted to database server,
and parsed by the parser, they are then passed to the query optimizer where optimization occurs. However, some
database engines allow guiding the query optimizer with hints.
A query is a request for information from a database. It can be as simple as "finding the address of a person with SS#
123-45-6789," or more complex like "finding the average salary of all the employed married men in California
between the ages 30 to 39, that earn less than their wives." Queries results are generated by accessing relevant
database data and manipulating it in a way that yields the requested information. Since database structures are
complex, in most cases, and especially for not-very-simple queries, the needed data for a query can be collected from
a database by accessing it in different ways, through different data-structures, and in different orders. Each different
way typically requires different processing time. Processing times of a same query may have large variance, from a
fraction of a second to hours, depending on the way selected. The purpose of query optimization, which is an
automated process, is to find the way to process a given query in minimum time. The large possible variance in time
justifies performing query optimization, though finding the exact optimal way to execute a query, among all
possibilities, is typically very complex, time consuming by itself, may be too costly, and often practically impossible.
Thus query optimization typically tries to approximate the optimum by comparing several common-sense
alternatives to provide in a reasonable time a "good enough" plan which typically does not deviate much from the
best possible result.

http://en.wikipedia.org/w/index.php?title=Poliqarp_Query_Language
http://en.wikipedia.org/w/index.php?title=Poliqarp
http://en.wikipedia.org/w/index.php?title=QUEL_query_languages
http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=RDQL
http://en.wikipedia.org/w/index.php?title=Resource_Description_Framework
http://en.wikipedia.org/w/index.php?title=Smiles_arbitrary_target_specification
http://en.wikipedia.org/w/index.php?title=Cheminformatics
http://en.wikipedia.org/w/index.php?title=Substructure_search
http://en.wikipedia.org/w/index.php?title=SPARQL
http://en.wikipedia.org/w/index.php?title=Resource_Description_Framework
http://en.wikipedia.org/w/index.php?title=Graph_%28mathematics%29
http://en.wikipedia.org/w/index.php?title=SPL_%28Search_Processing_Language%29
http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=Data_Manipulation_Language
http://en.wikipedia.org/w/index.php?title=SuprTool
http://en.wikipedia.org/w/index.php?title=TurboIMAGE
http://en.wikipedia.org/w/index.php?title=TMQL
http://en.wikipedia.org/w/index.php?title=Topic_Maps
http://en.wikipedia.org/w/index.php?title=D_%28data_language_specification%29
http://en.wikipedia.org/w/index.php?title=XQuery
http://en.wikipedia.org/w/index.php?title=XML_database
http://en.wikipedia.org/w/index.php?title=XPath
http://en.wikipedia.org/w/index.php?title=XSPARQL
http://en.wikipedia.org/w/index.php?title=Yahoo%21_query_language
http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=Yahoo%21
http://gellish.wiki.sourceforge.net/Querying+a+Gellish+English+database
http://en.wikipedia.org/w/index.php?title=Hint_%28SQL%29

Query optimization 171

General considerations
There is a trade-off between the amount of time spent figuring out the best query plan and the quality of the choice;
the optimizer may not choose the best answer on its own. Different qualities of database management systems have
different ways of balancing these two. Cost-based query optimizers evaluate the resource footprint of various query
plans and use this as the basis for plan selection. These assign an estimated "cost" to each possible query plan, and
choose the plan with the smallest cost. Costs are used to estimate the runtime cost of evaluating the query, in terms
of the number of I/O operations required, CPU path length, amount of disk buffer space, disk storage service time,
and interconnect usage between units of parallelism, and other factors determined from the data dictionary. The set
of query plans examined is formed by examining the possible access paths (e.g., primary index access, secondary
index access, full file scan) and various relational table join techniques (e.g., merge join, hash join, product join).
The search space can become quite large depending on the complexity of the SQL query. There are two types of
optimization. These consist of logical optimization which generates a sequence of relational algebra to solve the
query. In addition there is physical optimization which is used to determine the means of carrying out each
operation.

Implementation
Most query optimizers represent query plans as a tree of "plan nodes". A plan node encapsulates a single operation
that is required to execute the query. The nodes are arranged as a tree, in which intermediate results flow from the
bottom of the tree to the top. Each node has zero or more child nodes—those are nodes whose output is fed as input
to the parent node. For example, a join node will have two child nodes, which represent the two join operands,
whereas a sort node would have a single child node (the input to be sorted). The leaves of the tree are nodes which
produce results by scanning the disk, for example by performing an index scan or a sequential scan.

Join ordering
The performance of a query plan is determined largely by the order in which the tables are joined. For example,
when joining 3 tables A, B, C of size 10 rows, 10,000 rows, and 1,000,000 rows, respectively, a query plan that joins
B and C first can take several orders-of-magnitude more time to execute than one that joins A and C first. Most
query optimizers determine join order via a dynamic programming algorithm pioneered by IBM's System R database
project [citation needed]. This algorithm works in two stages:
1. First, all ways to access each relation in the query are computed. Every relation in the query can be accessed via a

sequential scan. If there is an index on a relation that can be used to answer a predicate in the query, an index scan
can also be used. For each relation, the optimizer records the cheapest way to scan the relation, as well as the
cheapest way to scan the relation that produces records in a particular sorted order.

2. The optimizer then considers combining each pair of relations for which a join condition exists. For each pair, the
optimizer will consider the available join algorithms implemented by the DBMS. It will preserve the cheapest
way to join each pair of relations, in addition to the cheapest way to join each pair of relations that produces its
output according to a particular sort order.

3.3. Then all three-relation query plans are computed, by joining each two-relation plan produced by the previous
phase with the remaining relations in the query.

In this manner, a query plan is eventually produced that joins all the queries in the relation. Note that the algorithm
keeps track of the sort order of the result set produced by a query plan, also called an interesting order. During
dynamic programming, one query plan is considered to beat another query plan that produces the same result, only if
they produce the same sort order. This is done for two reasons. First, a particular sort order can avoid a redundant
sort operation later on in processing the query. Second, a particular sort order can speed up a subsequent join because
it clusters the data in a particular way.

http://en.wikipedia.org/w/index.php?title=Query_optimizer
http://en.wikipedia.org/w/index.php?title=Instruction_path_length
http://en.wikipedia.org/w/index.php?title=Merge_join
http://en.wikipedia.org/w/index.php?title=Hash_join
http://en.wikipedia.org/w/index.php?title=Product_join
http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=Tree_data_structure
http://en.wikipedia.org/w/index.php?title=Index_scan
http://en.wikipedia.org/w/index.php?title=Join_%28SQL%29
http://en.wikipedia.org/w/index.php?title=Dynamic_programming
http://en.wikipedia.org/w/index.php?title=IBM
http://en.wikipedia.org/w/index.php?title=IBM_System_R
http://en.wikipedia.org/wiki/Citation_needed
http://en.wikipedia.org/w/index.php?title=Index_%28database%29
http://en.wikipedia.org/w/index.php?title=Predicate_%28computer_programming%29
http://en.wikipedia.org/w/index.php?title=Database_management_system

Query optimization 172

Historically, System-R derived query optimizers would often only consider left-deep query plans, which first join
two base tables together, then join the intermediate result with another base table, and so on. This heuristic reduces
the number of plans that need to be considered (n! instead of 4^n), but may result in not considering the optimal
query plan. This heuristic is drawn from the observation that join algorithms such as nested loops only require a
single tuple (aka row) of the outer relation at a time. Therefore, a left-deep query plan means that fewer tuples need
to be held in memory at any time: the outer relation's join plan need only be executed until a single tuple is produced,
and then the inner base relation can be scanned (this technique is called "pipelining").
Subsequent query optimizers have expanded this plan space to consider "bushy" query plans, where both operands to
a join operator could be intermediate results from other joins. Such bushy plans are especially important in parallel
computers because they allow different portions of the plan to be evaluated independently.

Query planning for nested SQL queries
A SQL query to a modern relational DBMS does more than just selections and joins. In particular, SQL queries often
nest several layers of SPJ blocks (Select-Project-Join), by means of group by, exists, and not exists operators. In
some cases such nested SQL queries can be flattened into a select-project-join query, but not always. Query plans for
nested SQL queries can also be chosen using the same dynamic programming algorithm as used for join ordering,
but this can lead to an enormous escalation in query optimization time. So some database management systems use
an alternative rule-based approach that uses a query graph model.

Cost estimation
One of the hardest problems in query optimization is to accurately estimate the costs of alternative query plans.
Optimizers cost query plans using a mathematical model of query execution costs that relies heavily on estimates of
the cardinality, or number of tuples, flowing through each edge in a query plan. Cardinality estimation in turn
depends on estimates of the selection factor[1] of predicates in the query. Traditionally, database systems estimate
selectivities through fairly detailed statistics on the distribution of values in each column, such as histograms. This
technique works well for estimation of selectivities of individual predicates. However many queries have
conjunctions of predicates such as select count(*) from R where R.make='Honda' and

R.model='Accord' . Query predicates are often highly correlated (for example, model='Accord' implies
make='Honda'), and it is very hard to estimate the selectivity of the conjunct in general. Poor cardinality
estimates and uncaught correlation are one of the main reasons why query optimizers pick poor query plans. This is
one reason why a database administrator should regularly update the database statistics, especially after major data
loads/unloads.

References
• Chaudhuri, Surajit (1998). "An Overview of Query Optimization in Relational Systems" [2]. Proceedings of the

ACM Symposium on Principles of Database Systems. pp. pages 34–43. doi:10.1145/275487.275492 [3].
• Ioannidis, Yannis (March 1996). "Query optimization" [4]. ACM Computing Surveys 28 (1): 121–123.

doi:10.1145/234313.234367 [5].
• Selinger, P. G.; Astrahan, M. M.; Chamberlin, D. D.; Lorie, R. A.; Price, T. G. (1979). "Access Path Selection in

a Relational Database Management System". Proceedings of the 1979 ACM SIGMOD International Conference
on Management of Data. pp. 23–34. doi:10.1145/582095.582099 [6]. ISBN 089791001X

http://en.wikipedia.org/w/index.php?title=Base_table
http://en.wikipedia.org/w/index.php?title=Heuristic
http://en.wikipedia.org/w/index.php?title=Tuple
http://en.wikipedia.org/w/index.php?title=Plan_space
http://en.wikipedia.org/w/index.php?title=Parallel_computers
http://en.wikipedia.org/w/index.php?title=Parallel_computers
http://en.wikipedia.org/w/index.php?title=Select-project-join
http://en.wikipedia.org/w/index.php?title=GROUP_BY_%28SQL%29
http://en.wikipedia.org/w/index.php?title=Exists_%28SQL_operator%29
http://en.wikipedia.org/w/index.php?title=Not_exists
http://en.wikipedia.org/w/index.php?title=Flattened
http://en.wikipedia.org/w/index.php?title=Cardinality
http://en.wikipedia.org/w/index.php?title=Selectivity
http://toolserver.org/%7Edispenser/cgi-bin/dab_solver.py?page=Query_optimization&editintro=Template:Disambiguation_needed/editintro&client=Template:Dn
http://en.wikipedia.org/w/index.php?title=Histograms
http://en.wikipedia.org/w/index.php?title=Logical_conjunction
http://en.wikipedia.org/w/index.php?title=Cardinality
http://en.wikipedia.org/w/index.php?title=Database_administrator
http://en.wikipedia.org/w/index.php?title=Surajit_Chaudhuri
http://citeseer.ist.psu.edu/chaudhuri98overview.html
http://en.wikipedia.org/w/index.php?title=Digital_object_identifier
http://dx.doi.org/10.1145%2F275487.275492
http://citeseer.ist.psu.edu/487912.html
http://en.wikipedia.org/w/index.php?title=Digital_object_identifier
http://dx.doi.org/10.1145%2F234313.234367
http://en.wikipedia.org/w/index.php?title=Patricia_Selinger
http://en.wikipedia.org/w/index.php?title=Donald_D._Chamberlin
http://en.wikipedia.org/w/index.php?title=Digital_object_identifier
http://dx.doi.org/10.1145%2F582095.582099
http://en.wikipedia.org/w/index.php?title=International_Standard_Book_Number
http://en.wikipedia.org/w/index.php?title=Special:BookSources/089791001X

Query optimization 173

References
[1] http:/ / toolserver. org/ %7Edispenser/ cgi-bin/ dab_solver. py?page=Query_optimization& editintro=Template:Disambiguation_needed/

editintro& client=Template:Dn
[2] http:/ / citeseer. ist. psu. edu/ chaudhuri98overview. html
[3] http:/ / dx. doi. org/ 10. 1145%2F275487. 275492
[4] http:/ / citeseer. ist. psu. edu/ 487912. html
[5] http:/ / dx. doi. org/ 10. 1145%2F234313. 234367
[6] http:/ / dx. doi. org/ 10. 1145%2F582095. 582099

Query plan
A query plan (or query execution plan) is an ordered set of steps used to access data in a SQL relational database
management system. This is a specific case of the relational model concept of access plans.
Since SQL is declarative, there are typically a large number of alternative ways to execute a given query, with
widely varying performance. When a query is submitted to the database, the query optimizer evaluates some of the
different, correct possible plans for executing the query and returns what it considers the best alternative. Because
query optimizers are imperfect, database users and administrators sometimes need to manually examine and tune the
plans produced by the optimizer to get better performance.

Generating query plans
A given database management system may offer one or more mechanisms for returning the plan for a given query.
Some packages feature tools which will generate a graphical representation of a query plan. Other tools allow a
special mode to be set on the connection to cause the DBMS to return a textual description of the query plan.
Another mechanism for retrieving the query plan involves querying a virtual database table after executing the query
to be examined. In Oracle, for instance, this can be achieved using the EXPLAIN PLAN statement.

Graphical plans

The SQL Server Management Studio tool which ships with Microsoft SQL Server, for example, shows this graphical plan when executing this
two-table join against a sample database:

SELECT *

FROM HumanResources.Employee AS e

 INNER JOIN Person.Contact AS c

 ON e.ContactID = c.ContactID

ORDER BY c.LastName

The UI allows exploration of various attributes of the operators involved in the query plan, including the operator type, the number of rows each
operator consumes or produces, and the expected cost of each operator's work.

Textual plans
The textual plan given for the same query in the screenshot is shown here:

StmtText

 |--Sort(ORDER BY:([c].[LastName] ASC))

 |--Nested Loops(Inner Join, OUTER REFERENCES:([e].[ContactID],

[Expr1004]) WITH UNORDERED PREFETCH)

 |--Clustered Index

http://toolserver.org/%7Edispenser/cgi-bin/dab_solver.py?page=Query_optimization&editintro=Template:Disambiguation_needed/editintro&client=Template:Dn
http://toolserver.org/%7Edispenser/cgi-bin/dab_solver.py?page=Query_optimization&editintro=Template:Disambiguation_needed/editintro&client=Template:Dn
http://citeseer.ist.psu.edu/chaudhuri98overview.html
http://dx.doi.org/10.1145%2F275487.275492
http://citeseer.ist.psu.edu/487912.html
http://dx.doi.org/10.1145%2F234313.234367
http://dx.doi.org/10.1145%2F582095.582099
http://en.wikipedia.org/w/index.php?title=Data_access
http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=Declarative_programming
http://en.wikipedia.org/w/index.php?title=Information_retrieval
http://en.wikipedia.org/w/index.php?title=Query_optimizer
http://en.wikipedia.org/w/index.php?title=Microsoft_SQL_Server

Query plan 174

Scan(OBJECT:([AdventureWorks].[HumanResources].[Employee].[PK_Employee_EmployeeID]

 AS [e]))

 |--Clustered Index

Seek(OBJECT:([AdventureWorks].[Person].[Contact].[PK_Contact_ContactID]

 AS [c]),

SEEK:([c].[ContactID]=[AdventureWorks].[HumanResources].[Employee].[ContactID]

 as [e].[ContactID]) ORDERED FORWARD)

It indicates that the query engine will do a scan over the primary key index on the Employee table and a matching
seek through the primary key index (the ContactID column) on the Contact table to find matching rows. The
resulting rows from each side will be shown to a nested loops join operator, sorted, then returned as the result set to
the connection.
In order to tune the query, the user must understand the different operators that the database may use, and which
ones might be more efficient than others while still providing semantically correct query results.

Database tuning
Reviewing the query plan can present opportunities for new indexes or changes to existing indexes. It can also show
that the database is not properly taking advantage of existing indexes (see query optimizer).

Query tuning
The query optimizer will not always choose the best query plan for a given query. In some databases the query plan
can be reviewed, problems found, and then the query optimizer given hints on how to improve it. In other databases
alternatives to express the same query (other queries that return the same results) can be tried. Some query tools can
generate embedded hints in the query, for use by the optimizer.
Some databases like Oracle provide a Plan table for query tuning. This plan table will return the cost and time for
executing a Query. In Oracle there are 2 optimization techniques:
1.1. CBO or Cost Based Optimization
2.2. RBO or Rule Based Optimization
The RBO is slowly being deprecated. For CBO to be used, all the tables referenced by the query must be analyzed.
To analyze a table, a package DBMS_STATS can be made use of.
The others methods for query optimization include:
1.1. SQL Trace
2.2. Oracle Trace
3.3. TKPROF
• Video tutorial on how to perform SQL performance tuning with reference to Oracle [1]

References
[1] http:/ / seeingwithc. org/ sqltuning. html

http://en.wikipedia.org/w/index.php?title=Index_%28database%29
http://en.wikipedia.org/w/index.php?title=Query_optimizer
http://en.wikipedia.org/w/index.php?title=Query_optimizer
http://en.wikipedia.org/w/index.php?title=Hint_%28SQL%29
http://seeingwithc.org/sqltuning.html
http://seeingwithc.org/sqltuning.html

175

Functions

Database administration and automation
Database administration is the function of managing and maintaining database management systems (DBMS)
software. Mainstream DBMS software such as Oracle, IBM DB2 and Microsoft SQL Server need ongoing
management. As such, corporations that use DBMS software often hire specialized IT (Information Technology)
personnel called Database Administrators or DBAs.

DBA Responsibilities
•• Installation, configuration and upgrading of Database server software and related products.
•• Evaluate Database features and Database related products.
•• Establish and maintain sound backup and recovery policies and procedures.
• Take care of the Database design and implementation.
•• Implement and maintain database security (create and maintain users and roles, assign privileges).
• Database tuning and performance monitoring.
•• Application tuning and performance monitoring.
•• Setup and maintain documentation and standards.
•• Plan growth and changes (capacity planning).
•• Work as part of a team and provide 24x7 support when required.
•• Do general technical troubleshooting and give cons.
•• Database recovery.

Types of database administration
There are three types of DBAs:
1.1. Systems DBAs (also referred to as Physical DBAs, Operations DBAs or Production Support DBAs): focus on the

physical aspects of database administration such as DBMS installation, configuration, patching, upgrades,
backups, restores, refreshes, performance optimization, maintenance and disaster recovery.

2. Development DBAs: focus on the logical and development aspects of database administration such as data model
design and maintenance, DDL (data definition language) generation, SQL writing and tuning, coding stored
procedures, collaborating with developers to help choose the most appropriate DBMS feature/functionality and
other pre-production activities.

3. Application DBAs: usually found in organizations that have purchased 3rd party application software such as
ERP (enterprise resource planning) and CRM (customer relationship management) systems. Examples of such
application software includes Oracle Applications, Siebel and PeopleSoft (both now part of Oracle Corp.) and
SAP. Application DBAs straddle the fence between the DBMS and the application software and are responsible
for ensuring that the application is fully optimized for the database and vice versa. They usually manage all the
application components that interact with the database and carry out activities such as application installation and
patching, application upgrades, database cloning, building and running data cleanup routines, data load process
management, etc.

While individuals usually specialize in one type of database administration, in smaller organizations, it is not
uncommon to find a single individual or group performing more than one type of database administration.

http://en.wikipedia.org/w/index.php?title=Database_management_system
http://en.wikipedia.org/w/index.php?title=Oracle_database
http://en.wikipedia.org/w/index.php?title=IBM_DB2
http://en.wikipedia.org/w/index.php?title=Microsoft_SQL_Server
http://en.wikipedia.org/w/index.php?title=Information_technology
http://en.wikipedia.org/w/index.php?title=Database_administrator
http://en.wikipedia.org/w/index.php?title=Database_design
http://en.wikipedia.org/w/index.php?title=Database_tuning
http://en.wikipedia.org/w/index.php?title=Data_model
http://en.wikipedia.org/w/index.php?title=Data_Definition_Language
http://en.wikipedia.org/w/index.php?title=Third-party_developer
http://en.wikipedia.org/w/index.php?title=Application_software
http://en.wikipedia.org/w/index.php?title=Enterprise_resource_planning
http://en.wikipedia.org/w/index.php?title=Customer_relationship_management
http://en.wikipedia.org/w/index.php?title=Oracle_Applications
http://en.wikipedia.org/w/index.php?title=PeopleSoft
http://en.wikipedia.org/w/index.php?title=Software_componentry
http://en.wikipedia.org/w/index.php?title=Process_management
http://en.wikipedia.org/w/index.php?title=Process_management

Database administration and automation 176

Nature of database administration
The degree to which the administration of a database is automated dictates the skills and personnel required to
manage databases. On one end of the spectrum, a system with minimal automation will require significant
experienced resources to manage; perhaps 5-10 databases per DBA. Alternatively an organization might choose to
automate a significant amount of the work that could be done manually therefore reducing the skills required to
perform tasks. As automation increases, the personnel needs of the organization splits into highly skilled workers to
create and manage the automation and a group of lower skilled "line" DBAs who simply execute the automation.
Database administration work is complex, repetitive, time-consuming and requires significant training. Since
databases hold valuable and mission-critical data, companies usually look for candidates with multiple years of
experience. Database administration often requires DBAs to put in work during off-hours (for example, for planned
after hours downtime, in the event of a database-related outage or if performance has been severely degraded). DBAs
are commonly well compensated for the long hours
One key skill required and often overlooked when selecting a DBA is database recovery (under disaster recovery). It
is not a case of “if” but a case of “when” a database suffers a failure, ranging from a simple failure to a full
catastrophic failure. The failure may be data corruption, media failure, or user induced errors. In either situation the
DBA must have the skills to recover the database to a given point in time to prevent a loss of data. A highly skilled
DBA can spend a few minutes or exceedingly long hours to get the database back to the operational point.

Database administration tools
Often, the DBMS software comes with certain tools to help DBAs manage the DBMS. Such tools are called native
tools. For example, Microsoft SQL Server comes with SQL Server Enterprise Manager and Oracle has tools such as
SQL*Plus and Oracle Enterprise Manager/Grid Control. In addition, 3rd parties such as BMC, Quest Software,
Embarcadero Technologies, EMS Database Management Solutions and SQL Maestro Group offer GUI tools to
monitor the DBMS and help DBAs carry out certain functions inside the database more easily.
Another kind of database software exists to manage the provisioning of new databases and the management of
existing databases and their related resources. The process of creating a new database can consist of hundreds or
thousands of unique steps from satisfying prerequisites to configuring backups where each step must be successful
before the next can start. A human cannot be expected to complete this procedure in the same exact way time after
time - exactly the goal when multiple databases exist. As the number of DBAs grows, without automation the
number of unique configurations frequently grows to be costly/difficult to support. All of these complicated
procedures can be modeled by the best DBAs into database automation software and executed by the standard
DBAs. Software has been created specifically to improve the reliability and repeatability of these procedures such as
Stratavia's Data Palette and GridApp Systems Clarity.

The impact of IT automation on database administration
Recently, automation has begun to impact this area significantly. Newer technologies such as Stratavia's Data Palette
suite and GridApp Systems Clarity have begun to increase the automation of databases causing the reduction of
database related tasks. However at best this only reduces the amount of mundane, repetitive activities and does not
eliminate the need for DBAs. The intention of DBA automation is to enable DBAs to focus on more proactive
activities around database architecture, deployment, performance and service level management.
Every database requires a database owner account that can perform all schema management operations. This
account is specific to the database and cannot log in to Data Director. You can add database owner accounts after
database creation. Data Director users must log in with their database-specific credentials to view the database, its
entities, and its data or to perform database management tasks. Database administrators and application developers
can manage databases only if they have appropriate permissions and roles granted to them by the organization

http://en.wikipedia.org/w/index.php?title=Skilled_worker
http://en.wikipedia.org/w/index.php?title=SQL%2APlus
http://en.wikipedia.org/w/index.php?title=Quest_Software
http://en.wikipedia.org/w/index.php?title=Embarcadero_Technologies
http://en.wikipedia.org/w/index.php?title=EMS_Database_Management_Solutions
http://en.wikipedia.org/w/index.php?title=Stratavia
http://en.wikipedia.org/w/index.php?title=Data_Palette
http://en.wikipedia.org/w/index.php?title=GridApp_Systems
http://en.wikipedia.org/w/index.php?title=Stratavia
http://en.wikipedia.org/w/index.php?title=Data_Palette
http://en.wikipedia.org/w/index.php?title=GridApp_Systems

Database administration and automation 177

administrator. The permissions and roles must be granted on the database group or on the database, and they only
apply within the organization in which they are granted.

Learning database administration
There are several education institutes that offer professional courses, including late-night programs, to allow
candidates to learn database administration. Also, DBMS vendors such as Oracle, Microsoft and IBM offer
certification programs to help companies to hire qualified DBA practitioners. College degree in Computer Science or
related field is helpful but not necessarily a prerequisite.

External references
• "A set theoretic data structure and retrieval language" [1]. SIGIR Forum (ACM Special Interest Group on

Information Retrieval) 7 (4): 45–55. Winter 1972.
• Thomas Haigh (June 2006). "Origins of the Data Base Management System" [2] (PDF). SIGMOD Record (ACM

Special Interest Group on Management of Data) 35 (2).
This article is based on material taken from the Free On-line Dictionary of Computing prior to 1 November 2008 and
incorporated under the "relicensing" terms of the GFDL, version 1.3 or later.

References
[1] http:/ / portal. acm. org/ citation. cfm?id=1095495. 1095500
[2] http:/ / www. tomandmaria. com/ tom/ Writing/ VeritableBucketOfFactsSIGMOD. pdf

Replication (computing)
Replication in computing involves sharing information so as to ensure consistency between redundant resources,
such as software or hardware components, to improve reliability, fault-tolerance, or accessibility.

Terminology
One speaks of:
• data replication if the same data is stored on multiple storage devices,[1]

• computation replication if the same computing task is executed many times.
A computational task is typically replicated in space, i.e. executed on separate devices, or it could be replicated in
time, if it is executed repeatedly on a single device.
The access to a replicated entity is typically uniform with access to a single, non-replicated entity. The replication
itself should be transparent to an external user. Also, in a failure scenario, a failover of replicas is hidden as much as
possible. The latter refers to data replication with respect to Quality of Service (QoS) aspects.[2]

Computer scientists talk about active and passive replication in systems that replicate data or services:
• active replication is performed by processing the same request at every replica.
• passive replication involves processing each single request on a single replica and then transferring its resultant

state to the other replicas.
If at any time one master replica is designated to process all the requests, then we are talking about the
primary-backup scheme (master-slave scheme) predominant in high-availability clusters. On the other side, if any
replica processes a request and then distributes a new state, then this is a multi-primary scheme (called multi-master
in the database field). In the multi-primary scheme, some form of distributed concurrency control must be used, such

http://portal.acm.org/citation.cfm?id=1095495.1095500
http://en.wikipedia.org/w/index.php?title=Special_Interest_Group_on_Information_Retrieval
http://en.wikipedia.org/w/index.php?title=Special_Interest_Group_on_Information_Retrieval
http://www.tomandmaria.com/tom/Writing/VeritableBucketOfFactsSIGMOD.pdf
http://en.wikipedia.org/w/index.php?title=SIGMOD
http://en.wikipedia.org/w/index.php?title=SIGMOD
http://en.wikipedia.org/w/index.php?title=Free_On-line_Dictionary_of_Computing
http://en.wikipedia.org/w/index.php?title=GNU_Free_Documentation_License
http://portal.acm.org/citation.cfm?id=1095495.1095500
http://www.tomandmaria.com/tom/Writing/VeritableBucketOfFactsSIGMOD.pdf
http://en.wikipedia.org/w/index.php?title=Computing
http://en.wikipedia.org/w/index.php?title=Software
http://en.wikipedia.org/w/index.php?title=Computer_hardware
http://en.wikipedia.org/w/index.php?title=Fault-tolerance
http://en.wikipedia.org/w/index.php?title=Data_storage_device
http://en.wikipedia.org/w/index.php?title=Transparency_%28human-computer_interaction%29
http://en.wikipedia.org/w/index.php?title=Failover
http://en.wikipedia.org/w/index.php?title=Quality_of_service
http://en.wikipedia.org/w/index.php?title=Master-slave_%28computers%29
http://en.wikipedia.org/w/index.php?title=High-availability_cluster
http://en.wikipedia.org/w/index.php?title=Multi-master_replication
http://en.wikipedia.org/w/index.php?title=Distributed_concurrency_control

Replication (computing) 178

as distributed lock manager.
Load balancing differs from task replication, since it distributes a load of different (not the same) computations
across machines, and allows a single computation to be dropped in case of failure. Load balancing, however,
sometimes uses data replication (especially multi-master replication) internally, to distribute its data among
machines.
Backup differs from replication in that it saves a copy of data unchanged for a long period of time.[citation needed]

Replicas, on the other hand, undergo frequent updates and quickly lose any historical state. Replication is one of the
oldest and most important topics in the overall area of distributed systems.
Whether one replicates data or computation, the objective is to have some group of processes that handle incoming
events. If we replicate data, these processes are passive and operate only to maintain the stored data, reply to read
requests, and apply updates. When we replicate computation, the usual goal is to provide fault-tolerance. For
example, a replicated service might be used to control a telephone switch, with the objective of ensuring that even if
the primary controller fails, the backup can take over its functions. But the underlying needs are the same in both
cases: by ensuring that the replicas see the same events in equivalent orders, they stay in consistent states and hence
any replica can respond to queries.

Replication models in distributed systems
A number of widely cited models exist for data replication, each having its own properties and performance:
1. Transactional replication. This is the model for replicating transactional data, for example a database or some

other form of transactional storage structure. The one-copy serializability model is employed in this case, which
defines legal outcomes of a transaction on replicated data in accordance with the overall ACID properties that
transactional systems seek to guarantee.

2. State machine replication. This model assumes that replicated process is a deterministic finite automaton and that
atomic broadcast of every event is possible. It is based on a distributed computing problem called distributed
consensus and has a great deal in common with the transactional replication model. This is sometimes mistakenly
used as synonym of active replication. State machine replication is usually implemented by a replicated log
consisting of multiple subsequent rounds of the Paxos algorithm. This was popularized by Google's Chubby
system, and is the core behind the open-source Keyspace data store.

3. Virtual synchrony. This computational model is used when a group of processes cooperate to replicate in-memory
data or to coordinate actions. The model defines a distributed entity called a process group. A process can join a
group, and is provided with a checkpoint containing the current state of the data replicated by group members.
Processes can then send multicasts to the group and will see incoming multicasts in the identical order.
Membership changes are handled as a special multicast that delivers a new membership view to the processes in
the group.

Database replication
Database replication can be used on many database management systems, usually with a master/slave relationship
between the original and the copies. The master logs the updates, which then ripple through to the slaves. The slave
outputs a message stating that it has received the update successfully, thus allowing the sending (and potentially
re-sending until successfully applied) of subsequent updates.
Multi-master replication, where updates can be submitted to any database node, and then ripple through to other
servers, is often desired, but introduces substantially increased costs and complexity which may make it impractical
in some situations. The most common challenge that exists in multi-master replication is transactional conflict
prevention or resolution. Most synchronous or eager replication solutions do conflict prevention, while asynchronous
solutions have to do conflict resolution. For instance, if a record is changed on two nodes simultaneously, an eager

http://en.wikipedia.org/w/index.php?title=Distributed_lock_manager
http://en.wikipedia.org/w/index.php?title=Load_balancing_%28computing%29
http://en.wikipedia.org/w/index.php?title=Backup
http://en.wikipedia.org/wiki/Citation_needed
http://en.wikipedia.org/w/index.php?title=Distributed_computing
http://en.wikipedia.org/w/index.php?title=Transactional_replication
http://en.wikipedia.org/w/index.php?title=Transactional_data
http://en.wikipedia.org/w/index.php?title=One-copy_serializability
http://en.wikipedia.org/w/index.php?title=State_machine_replication
http://en.wikipedia.org/w/index.php?title=Deterministic_finite_automaton
http://en.wikipedia.org/w/index.php?title=Atomic_broadcast
http://en.wikipedia.org/w/index.php?title=Consensus_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Consensus_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Paxos_algorithm
http://en.wikipedia.org/w/index.php?title=Keyspace_%28data_store%29
http://en.wikipedia.org/w/index.php?title=Virtual_synchrony
http://en.wikipedia.org/w/index.php?title=Database_management_system
http://en.wikipedia.org/w/index.php?title=Multi-master_replication

Replication (computing) 179

replication system would detect the conflict before confirming the commit and abort one of the transactions. A lazy
replication system would allow both transactions to commit and run a conflict resolution during resynchronization.
The resolution of such a conflict may be based on a timestamp of the transaction, on the hierarchy of the origin
nodes or on much more complex logic, which decides consistently on all nodes.
Database replication becomes difficult when it scales up. Usually, the scale up goes with two dimensions, horizontal
and vertical: horizontal scale-up has more data replicas, vertical scale-up has data replicas located further away in
distance. Problems raised by horizontal scale-up can be alleviated by a multi-layer multi-view access protocol.
Vertical scale-up causes fewer problems in that internet reliability and performance are improving.
When data is replicated between database servers, so that the information remains consistent throughout the database
system and users cannot tell or even know which server in the DBMS they are using, the system is said to exhibit
replication transparency.

Disk storage replication

Storage replication

Active (real-time) storage replication is usually implemented by
distributing updates of a block device to several physical hard disks.
This way, any file system supported by the operating system can be
replicated without modification, as the file system code works on a
level above the block device driver layer. It is implemented either in
hardware (in a disk array controller) or in software (in a device driver).

The most basic method is disk mirroring, typical for locally-connected
disks. The storage industry narrows the definitions, so mirroring is a
local (short-distance) operation. A replication is extendable across a
computer network, so the disks can be located in physically distant
locations, and the master-slave database replication model is usually
applied. The purpose of replication is to prevent damage from failures
or disasters that may occur in one location, or in case such events do occur, improve the ability to recover. For
replication, latency is the key factor because it determines either how far apart the sites can be or the type of
replication that can be employed.

The main characteristic of such cross-site replication is how write operations are handled:
• Synchronous replication - guarantees "zero data loss" by the means of atomic write operation, i.e. write either

completes on both sides or not at all. Write is not considered complete until acknowledgement by both local and
remote storage. Most applications wait for a write transaction to complete before proceeding with further work,
hence overall performance decreases considerably. Inherently, performance drops proportionally to distance, as
latency is caused by speed of light. For 10 km distance, the fastest possible roundtrip takes 67 μs, whereas
nowadays a whole local cached write completes in about 10-20 μs.
• An often-overlooked aspect of synchronous replication is the fact that failure of remote replica, or even just the

interconnection, stops by definition any and all writes (freezing the local storage system). This is the behaviour
that guarantees zero data loss. However, many commercial systems at such potentially dangerous point do not
freeze, but just proceed with local writes, losing the desired zero recovery point objective.

• The main difference between synchronous and asynchronous volume replication is that synchronous
replication needs to wait for the destination server in any write operation.[3]

• Asynchronous replication - write is considered complete as soon as local storage acknowledges it. Remote storage
is updated, but probably with a small lag. Performance is greatly increased, but in case of losing a local storage,
the remote storage is not guaranteed to have the current copy of data and most recent data may be lost.

http://en.wikipedia.org/w/index.php?title=Lazy_replication
http://en.wikipedia.org/w/index.php?title=Lazy_replication
http://en.wikipedia.org/w/index.php?title=File%3AStorage_replication.png
http://en.wikipedia.org/w/index.php?title=Block_device
http://en.wikipedia.org/w/index.php?title=Hard_disk
http://en.wikipedia.org/w/index.php?title=File_system
http://en.wikipedia.org/w/index.php?title=Operating_system
http://en.wikipedia.org/w/index.php?title=Disk_array_controller
http://en.wikipedia.org/w/index.php?title=Device_driver
http://en.wikipedia.org/w/index.php?title=Disk_mirroring
http://en.wikipedia.org/w/index.php?title=Computer_network
http://en.wikipedia.org/w/index.php?title=Disaster_Recovery
http://en.wikipedia.org/w/index.php?title=Synchronization
http://en.wikipedia.org/w/index.php?title=Atomic_operation
http://en.wikipedia.org/w/index.php?title=Latency_%28engineering%29
http://en.wikipedia.org/w/index.php?title=Speed_of_light
http://en.wikipedia.org/w/index.php?title=Recovery_point_objective
http://en.wikipedia.org/w/index.php?title=Asynchronous_I/O
http://en.wikipedia.org/w/index.php?title=Lag

Replication (computing) 180

• Semi-synchronous replication - this usually means[citation needed] that a write is considered complete as soon as
local storage acknowledges it and a remote server acknowledges that it has received the write either into memory
or to a dedicated log file. The actual remote write is not performed immediately but is performed asynchronously,
resulting in better performance than synchronous replication but offering no guarantee of durability.
• Point-in-time replication - introduces periodic snapshots that are replicated instead of primary storage. If the

replicated snapshots are pointer-based, then during replication only the changed data is moved not the entire
volume. Using this method, replication can occur over smaller, less expensive bandwidth links such as iSCSI
or T1 instead of fiber optic lines.

To address the limits imposed by latency, techniques of WAN optimization can be applied to the link.

Notable implementations
Many distributed filesystems use replication to ensure fault tolerance and avoid a single point of failure. See the lists
of distributed fault-tolerant file systems and distributed parallel fault-tolerant file systems.
Other notable storage replication software includes:
• CA - ARCserve [4] Replication and High Availability RHA [5]

• Dell - AppAssure Backup, replication and disaster recovery
• Dell - Compellent Remote Instant Replay
• EMC - EMC RecoverPoint
• EMC - EMC SRDF
• EMC - EMC VPLEX
• DataCore SANsymphony & SANmelody
• StarWind iSCSI SAN & NAS
• FalconStor Replication & Mirroring (sub-block heterogeneous point-in-time, async, sync)
• FreeNas - Replication handled by ssh + zfs file system [6]

•• Hitachi TrueCopy
•• Hewlett-Packard - Continuous Access (HP CA)
• IBM - Peer to Peer Remote Copy (PPRC) and Global Mirror (known together as IBM Copy Services)
• Linux - DRBD - open source module
• HAST DRBD-like Open Source solution for FreeBSD.
• MapR volume mirroring
• NetApp SyncMirror
• NetApp SnapMirror
• Symantec Veritas Volume Replicator (VVR)
• VMware - Site Recovery Manager (SRM) [7]

File-based replication
File-based replication is replicating files at a logical level rather than replicating at the storage block level. There are
many different ways of performing this. Unlike with storage-level replication, the solutions almost exclusively rely
on software.

Capture with a kernel driver
With the use of a kernel driver (specifically a filter driver), that intercepts calls to the filesystem functions, any
activity is captured immediately as it occurs. This utilises the same type of technology that real time active virus
checkers employ. At this level, logical file operations are captured like file open, write, delete, etc. The kernel driver
transmits these commands to another process, generally over a network to a different machine, which will mimic the

http://en.wikipedia.org/wiki/Citation_needed
http://en.wikipedia.org/w/index.php?title=Snapshot_%28computer_storage%29
http://en.wikipedia.org/w/index.php?title=WAN_optimization
http://en.wikipedia.org/w/index.php?title=Distributed_filesystem
http://en.wikipedia.org/w/index.php?title=List_of_file_systems%23%23Distributed_fault-tolerant_file_systems
http://en.wikipedia.org/w/index.php?title=List_of_file_systems%23Distributed_parallel_fault-tolerant_file_systems
http://en.wikipedia.org/w/index.php?title=CA
http://www.arcserve.com/gb/default.aspx
http://www.arcserve.com/gb/products/ca-arcserve-replication/ca-arcserve-replication-features-overview.aspx
http://en.wikipedia.org/w/index.php?title=Dell
http://en.wikipedia.org/w/index.php?title=AppAssure
http://en.wikipedia.org/w/index.php?title=Dell
http://en.wikipedia.org/w/index.php?title=EMC
http://en.wikipedia.org/w/index.php?title=RecoverPoint
http://en.wikipedia.org/w/index.php?title=EMC
http://en.wikipedia.org/w/index.php?title=SRDF
http://en.wikipedia.org/w/index.php?title=EMC
http://en.wikipedia.org/w/index.php?title=VPLEX
http://en.wikipedia.org/w/index.php?title=DataCore_Software
http://en.wikipedia.org/w/index.php?title=StarWind_Software
http://en.wikipedia.org/w/index.php?title=FalconStor
http://en.wikipedia.org/w/index.php?title=FreeNas
http://en.wikipedia.org/w/index.php?title=Hitachi_TrueCopy
http://en.wikipedia.org/w/index.php?title=IBM
http://en.wikipedia.org/w/index.php?title=Peer_to_Peer_Remote_Copy
http://en.wikipedia.org/w/index.php?title=Global_Mirror
http://en.wikipedia.org/w/index.php?title=DRBD
http://en.wikipedia.org/w/index.php?title=Highly_Available_STorage
http://en.wikipedia.org/w/index.php?title=MapR
http://en.wikipedia.org/w/index.php?title=NetApp_filer%23SyncMirror
http://en.wikipedia.org/w/index.php?title=NetApp_filer%23SnapMirror
http://en.wikipedia.org/w/index.php?title=Veritas_Software
http://en.wikipedia.org/w/index.php?title=VMware
http://en.wikipedia.org/w/index.php?title=Kernel_driver
http://en.wikipedia.org/w/index.php?title=Filter_driver

Replication (computing) 181

operations of the source machine. Like block-level storage replication, the file-level replication allows both
synchronous and asynchronous modes. In synchronous mode, write operations on the source machine are held and
not allowed to occur until the destination machine has acknowledged the successful replication. Synchronous mode
is less common with file replication products although a few solutions exists.[8]

File level replication solution yield a few benefits. Firstly because data is captured at a file level it can make an
informed decision on whether to replicate based on the location of the file and the type of file. Hence unlike
block-level storage replication where a whole volume needs to be replicated, file replication products have the ability
to exclude temporary files or parts of a filesystem that hold no business value. This can substantially reduce the
amount of data sent from the source machine as well as decrease the storage burden on the destination machine. A
further benefit to decreasing bandwidth is the data transmitted can be more granular than with block-level
replication. If an application writes 100 bytes, only the 100 bytes are transmitted not a complete disk block which is
generally 4096 bytes.
On a negative side, as this is a software only solution, it requires implementation and maintenance on the operating
system level, and uses some of machine's processing power (CPU).
Notable implementations:
• CA ARCserve [4] Replication [5]

• Cofio Software AIMstor Replication [9]

• Double-Take Software Availability [10]

• EDpCloud Software EDpCloud Real Time Replication [11]

Filesystem journal replication

In many ways working like a database journal, many filesystems have the ability to journal their activity. The journal
can be sent to another machine, either periodically or in real time. It can be used there to play back events.
Notable implementations:
• Microsoft DPM (periodical updates, not in real time)

Batch replication
This is the process of comparing the source and destination filesystems and ensuring that the destination matches the
source. The key benefit is that such solutions are generally free or inexpensive. The downside is that the process of
synchronizing them is quite system-intensive, and consequently this process generally runs infrequently.
Notable implementations:
•• rsync

Distributed shared memory replication
Another example of using replication appears in distributed shared memory systems, where it may happen that many
nodes of the system share the same page of the memory - which usually means, that each node has a separate copy
(replica) of this page.

Primary-backup and multi-primary replication
Many classical approaches to replication are based on a primary/backup model where one device or process has
unilateral control over one or more other processes or devices. For example, the primary might perform some
computation, streaming a log of updates to a backup (standby) process, which can then take over if the primary fails.
This approach is the most common one for replicating databases, despite the risk that if a portion of the log is lost
during a failure, the backup might not be in a state identical to the one the primary was in, and transactions could

http://en.wikipedia.org/w/index.php?title=CA
http://www.arcserve.com/gb/default.aspx
http://www.arcserve.com/gb/products/ca-arcserve-replication/ca-arcserve-replication-features-overview.aspx
http://en.wikipedia.org/w/index.php?title=Cofio_Software
http://www.cofio.com/AIMstor-Replication/
http://en.wikipedia.org/w/index.php?title=Double-Take_Software
http://www.doubletake.com/uk/products/double-take-availability/Pages/default.aspx
http://en.wikipedia.org/w/index.php?title=EDpCloud_Software
http://www.enduradata.com/
http://en.wikipedia.org/w/index.php?title=Microsoft
http://en.wikipedia.org/w/index.php?title=System_Center_Data_Protection_Manager
http://en.wikipedia.org/w/index.php?title=Rsync
http://en.wikipedia.org/w/index.php?title=Distributed_shared_memory

Replication (computing) 182

then be lost.
A weakness of primary/backup schemes is that in settings where both processes could have been active, only one is
actually performing operations. We're gaining fault-tolerance but spending twice as much money to get this property.
For this reason, starting in the period around 1985, the distributed systems research community began to explore
alternative methods of replicating data. An outgrowth of this work was the emergence of schemes in which a group
of replicas could cooperate, with each process backup up the others, and each handling some share of the workload.
Jim Gray, a towering figure[12] within the database community, analyzed multi-primary replication schemes under
the transactional model and ultimately published a widely cited paper skeptical of the approach "The Dangers of
Replication and a Solution [13]". In a nutshell, he argued that unless data splits in some natural way so that the
database can be treated as n disjoint sub-databases, concurrency control conflicts will result in seriously degraded
performance and the group of replicas will probably slow down as a function of n. Indeed, he suggests that the most
common approaches are likely to result in degradation that scales as O(n³). His solution, which is to partition the
data, is only viable in situations where data actually has a natural partitioning key.
The situation is not always so bleak. For example, in the 1985-1987 period, the virtual synchrony model was
proposed and emerged as a widely adopted standard (it was used in the Isis Toolkit, Horus, Transis, Ensemble,
Totem, Spread, C-Ensemble, Phoenix and Quicksilver systems, and is the basis for the CORBA fault-tolerant
computing standard; the model is also used in IBM Websphere to replicate business logic and in Microsoft's
Windows Server 2008 enterprise clustering technology). Virtual synchrony permits a multi-primary approach in
which a group of processes cooperate to parallelize some aspects of request processing. The scheme can only be used
for some forms of in-memory data, but when feasible, provides linear speedups in the size of the group.
A number of modern products support similar schemes. For example, the Spread Toolkit supports this same virtual
synchrony model and can be used to implement a multi-primary replication scheme; it would also be possible to use
C-Ensemble or Quicksilver in this manner. WANdisco permits active replication where every node on a network is
an exact copy or replica and hence every node on the network is active at one time; this scheme is optimized for use
in a wide area network.

References
[1] http:/ / searchsqlserver. techtarget. com/ definition/ database-replication
[2] V. Andronikou, K. Mamouras, K. Tserpes, D. Kyriazis, T. Varvarigou, Dynamic QoS-aware Data Replication in Grid Environments, Elsevier

Future Generation Computer Systems - The International Journal of Grid Computing and eScience, 2012
[3] Open-E Knowledgebase. "What is the difference between asynchronous and synchronous volume replication?" (http:/ / kb. open-e. com/

What-is-the-difference-between-asynchronous-and-synchronous-volume-replication-_682. html) 12 August 2009.
[4] http:/ / www. arcserve. com/ gb/ default. aspx
[5] http:/ / www. arcserve. com/ gb/ products/ ca-arcserve-replication/ ca-arcserve-replication-features-overview. aspx
[6] http:/ / doc. freenas. org/ index. php/ Replication_Tasks
[7] http:/ / pubs. vmware. com/ srm-51/ index. jsp?topic=%2Fcom. vmware. srm. install_config.

doc%2FGUID-B3A49FFF-E3B9-45E3-AD35-093D896596A0. html
[8] AIMstor Replication (http:/ / www. cofio. com/ AIMstor-Replication/)
[9] http:/ / www. cofio. com/ AIMstor-Replication/
[10] http:/ / www. doubletake. com/ uk/ products/ double-take-availability/ Pages/ default. aspx
[11] http:/ / www. enduradata. com/
[12] Proceedings of the 1999 ACM SIGMOD International Conference on Management of Data: SIGMOD '99, Philadelphia, PA, USA; June

1–3, 1999, Volume 28; p. 3.
[13] http:/ / research. microsoft. com/ ~gray/ replicas. ps

http://en.wikipedia.org/w/index.php?title=Jim_Gray_%28computer_scientist%29
http://research.microsoft.com/~gray/replicas.ps
http://en.wikipedia.org/w/index.php?title=Virtual_synchrony
http://en.wikipedia.org/w/index.php?title=Spread_Toolkit
http://en.wikipedia.org/w/index.php?title=Microsoft_Cluster_Server
http://en.wikipedia.org/w/index.php?title=Spread_Toolkit
http://en.wikipedia.org/w/index.php?title=WANdisco
http://en.wikipedia.org/w/index.php?title=Replica
http://en.wikipedia.org/w/index.php?title=Wide_area_network
http://searchsqlserver.techtarget.com/definition/database-replication
http://kb.open-e.com/What-is-the-difference-between-asynchronous-and-synchronous-volume-replication-_682.html
http://kb.open-e.com/What-is-the-difference-between-asynchronous-and-synchronous-volume-replication-_682.html
http://www.arcserve.com/gb/default.aspx
http://www.arcserve.com/gb/products/ca-arcserve-replication/ca-arcserve-replication-features-overview.aspx
http://doc.freenas.org/index.php/Replication_Tasks
http://pubs.vmware.com/srm-51/index.jsp?topic=%2Fcom.vmware.srm.install_config.doc%2FGUID-B3A49FFF-E3B9-45E3-AD35-093D896596A0.html
http://pubs.vmware.com/srm-51/index.jsp?topic=%2Fcom.vmware.srm.install_config.doc%2FGUID-B3A49FFF-E3B9-45E3-AD35-093D896596A0.html
http://www.cofio.com/AIMstor-Replication/
http://www.cofio.com/AIMstor-Replication/
http://www.doubletake.com/uk/products/double-take-availability/Pages/default.aspx
http://www.enduradata.com/
http://research.microsoft.com/~gray/replicas.ps

183

Database Products

Comparison of object database management
systems
This is a comparison of notable object database management systems, showing what fundamental object
database features are implemented natively.

Name Current
Stable

Version

Language(s) SQL support Datatypes License Description

Caché 2012.1 ObjectScript
(dynamic

language), Basic.
Java/.NET object

mapping supported.

SQL subset. Object
notation allowed.

Supports
embedded SQL,

dynamic SQL and
xDBC access.

Proprietary MUMPS ancestry. Includes built-in
support for XML, Web/AJAX and an

EMB system called Ensemble.
Supports embedded, client/server and

distributed implementations.

ConceptBase Telos CBQL (based on
Datalog)

no types
but classes

open source,
FreeBSD-style

license

historical db, active rules,
meta-modeling, deductive rules

Db4o 8.0 C#, Java db4o-sql [1] .NET and
Java data

types

GPL,
custom,[2]

proprietary

Native Queries, LINQ support,
automatic schema evolution,

Transparent Activation/Persistence,
replication to RDBMS, Object

Manager plugin for Visual Studio and
Eclipse

Gemstone Smalltalk, Java

NeoDatis ODB C#, Java, Mono LGPL Embedded and Client/Server

ObjectDatabase++ 3.4 C++, TScript,
.NET

Proprietary Embedded

ObjectDB 2.4.6 Java None, uses JPA or
JDO

Proprietary

Objectivity/DB 10.2.1 C++, C#, Java,
Python, Smalltalk

and XML

SQL superset Proprietary Distributed, Parallel Query Engine

ObjectStore 7.2 (July
2011)

C++, Java,
interoperable with

.NET

SQL subset (also
has own object
query language)

Proprietary Embedded database supporting
efficient, distributed management of

C++ and Java objects. Avoids the
complexities and limitations of ORM
products such as Hibernate by storing

objects directly with their relationships
intact. Uses a page-based mapping

system for fast locking and efficient,
distributed, client-side caching.

ODABA C++, .NET GPL Terminology-oriented database

OpenAccess 2.2 C++ no Proprietary EDA database

http://en.wikipedia.org/w/index.php?title=Object_database
http://en.wikipedia.org/w/index.php?title=Object_database
http://en.wikipedia.org/w/index.php?title=Computer_languages
http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=Datatypes
http://en.wikipedia.org/w/index.php?title=Software_license
http://en.wikipedia.org/w/index.php?title=Cach%C3%A9_%28software%29
http://en.wikipedia.org/w/index.php?title=Proprietary_software
http://en.wikipedia.org/w/index.php?title=ConceptBase
http://en.wikipedia.org/w/index.php?title=Telos_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Datalog
http://en.wikipedia.org/w/index.php?title=Db4o
http://en.wikipedia.org/w/index.php?title=C_Sharp_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://code.google.com/p/db4o-sql/
http://en.wikipedia.org/w/index.php?title=GPL
http://en.wikipedia.org/w/index.php?title=Proprietary_software
http://en.wikipedia.org/w/index.php?title=Gemstone_%28database%29
http://en.wikipedia.org/w/index.php?title=NeoDatis_ODB
http://en.wikipedia.org/w/index.php?title=C_Sharp_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Mono_%28software%29
http://en.wikipedia.org/w/index.php?title=LGPL
http://en.wikipedia.org/w/index.php?title=ObjectDatabase%2B%2B
http://en.wikipedia.org/w/index.php?title=Proprietary_software
http://en.wikipedia.org/w/index.php?title=ObjectDB
http://en.wikipedia.org/w/index.php?title=Java_Persistence_API
http://en.wikipedia.org/w/index.php?title=Java_Data_Objects
http://en.wikipedia.org/w/index.php?title=Proprietary_software
http://en.wikipedia.org/w/index.php?title=Objectivity/DB
http://en.wikipedia.org/w/index.php?title=C%2B%2B
http://en.wikipedia.org/w/index.php?title=C_Sharp_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Python_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Smalltalk
http://en.wikipedia.org/w/index.php?title=XML
http://en.wikipedia.org/w/index.php?title=Proprietary_software
http://en.wikipedia.org/w/index.php?title=Objectstore
http://en.wikipedia.org/w/index.php?title=C%2B%2B
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Proprietary_software
http://en.wikipedia.org/w/index.php?title=ODABA
http://en.wikipedia.org/w/index.php?title=GNU_GPL
http://en.wikipedia.org/w/index.php?title=Terminology-oriented_database
http://en.wikipedia.org/w/index.php?title=OpenAccess
http://en.wikipedia.org/w/index.php?title=C%2B%2B
http://en.wikipedia.org/w/index.php?title=Proprietary_software
http://en.wikipedia.org/w/index.php?title=EDA_database

Comparison of object database management systems 184

OpenLink
Virtuoso

5.0.11 C++, Java/JSP,
ASP, ASPX,
Mono, RDF,
SPARQL,

SPARUL, SQL,
Perl, Python, PHP,

Ruby, XML,
ODBC, JDBC,

ADO.NET, more

SQL 9x/200x GPL or
proprietary

Perst 4.2 Java (including
Java SE, Java ME
& Android), C#
(including .NET,
.NET Compact

Framework, Mono
& Silverlight)

JSQL -
object-oriented
subset of SQL

Java and
.NET data

types

GPL,
Proprietary

Small footprint embedded database.
Diverse indexes and specialized

collection classes; LINQ; replication;
ACID transactions; native full text

search; includes Silverlight, Android
and Java ME demo apps.

Picolisp 3.1.1 Picolisp MIT License DB built into the language

Twig Java Apache license
2.0

Built on Google App Engine's
low-level Datastore API

Versant Object
Database

Proprietary

WakandaDB 4 JavaScript, C++ No support. Use
REST & SSJS

instead

JavaScript
and 4D

data types

AGPL,
proprietary[3]

NoSQL REST / Server-Side JavaScript
engine. Integrates Webkit

JavaScriptCore engine with HTML5 JS
APIs supported on the server. Tables

and columns are replaced by JavaScript
DataClasses and attributes.

Zope Object
Database

Python, C No support. Object
indexing and

searching is done
through ZCatalog

facility.

Zope Public
License

References
[1] http:/ / code. google. com/ p/ db4o-sql/
[2] http:/ / www. db4o. com/ about/ company/ legalpolicies/ docl. aspx
[3] Wakanda Commercial license (http:/ / www. wakanda. org/ license/ commercial)

http://en.wikipedia.org/w/index.php?title=Virtuoso_Universal_Server
http://en.wikipedia.org/w/index.php?title=Virtuoso_Universal_Server
http://en.wikipedia.org/w/index.php?title=C%2B%2B
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=ASPX
http://en.wikipedia.org/w/index.php?title=Resource_Description_Framework
http://en.wikipedia.org/w/index.php?title=SPARQL
http://en.wikipedia.org/w/index.php?title=SPARUL
http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=Python_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=PHP
http://en.wikipedia.org/w/index.php?title=Ruby_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=XML
http://en.wikipedia.org/w/index.php?title=GNU_GPL
http://en.wikipedia.org/w/index.php?title=Perst
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Java_SE
http://en.wikipedia.org/w/index.php?title=Java_ME
http://en.wikipedia.org/w/index.php?title=Android_%28operating_system%29
http://en.wikipedia.org/w/index.php?title=C_Sharp_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=.NET_Framework
http://en.wikipedia.org/w/index.php?title=.NET_Compact_Framework
http://en.wikipedia.org/w/index.php?title=.NET_Compact_Framework
http://en.wikipedia.org/w/index.php?title=Mono_%28software%29
http://en.wikipedia.org/w/index.php?title=Silverlight
http://en.wikipedia.org/w/index.php?title=GPL
http://en.wikipedia.org/w/index.php?title=Embedded_database
http://en.wikipedia.org/w/index.php?title=Collection_class
http://en.wikipedia.org/w/index.php?title=LINQ
http://en.wikipedia.org/w/index.php?title=Full_text_search
http://en.wikipedia.org/w/index.php?title=Full_text_search
http://en.wikipedia.org/w/index.php?title=Picolisp
http://en.wikipedia.org/w/index.php?title=MIT_License
http://en.wikipedia.org/w/index.php?title=Twig_%28database%29
http://en.wikipedia.org/w/index.php?title=Apache_license
http://en.wikipedia.org/w/index.php?title=Google_App_Engine
http://en.wikipedia.org/w/index.php?title=Datastore_API
http://en.wikipedia.org/w/index.php?title=Versant_Object_Database
http://en.wikipedia.org/w/index.php?title=Versant_Object_Database
http://en.wikipedia.org/w/index.php?title=Proprietary_software
http://en.wikipedia.org/w/index.php?title=Wakanda_%28software%29
http://en.wikipedia.org/w/index.php?title=JavaScript
http://en.wikipedia.org/w/index.php?title=C%2B%2B
http://en.wikipedia.org/w/index.php?title=REST
http://en.wikipedia.org/w/index.php?title=JavaScript
http://en.wikipedia.org/w/index.php?title=4th_Dimension_%28software%29
http://en.wikipedia.org/w/index.php?title=Affero_General_Public_License
http://en.wikipedia.org/w/index.php?title=Zope_Object_Database
http://en.wikipedia.org/w/index.php?title=Zope_Object_Database
http://en.wikipedia.org/w/index.php?title=Python_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Zope_Public_License
http://en.wikipedia.org/w/index.php?title=Zope_Public_License
http://code.google.com/p/db4o-sql/
http://www.db4o.com/about/company/legalpolicies/docl.aspx
http://www.wakanda.org/license/commercial

Comparison of object-relational database management systems 185

Comparison of object-relational database
management systems
This is a comparison of object-relational database management systems (ORDBMSs). Each system has at least
some features of an object-relational database; they vary widely in their completeness and the approaches taken.
The following tables compare general and technical information; please see the individual products' articles for
further information. This article is not all-inclusive nor necessarily up to date. Unless otherwise specified in
footnotes, comparisons are based on the stable versions without any add-ons, extensions or external programs.

Basic data

Name Vendor License OS Notes

Adaptive Server Enterprise SAP Proprietary Cross-platform

CUBRID NHN Corporation GPL/BSD Linux, Windows

DB2 IBM Proprietary Cross-platform

GigaBASE knizhnik MIT Various SourceForge download page [1]

Greenplum Database Greenplum division of
EMC Corporation

Proprietary ? Uses PostgreSQL codebase

Informix IBM Proprietary Cross-platform

Caché InterSystems Proprietary

LogicSQL Shanghai Shifang
Software, Inc.

unknown license Download page [2]

Microsoft SQL Server Microsoft Corporation Proprietary Windows Supports data objects in .NET
languages

Oracle Database Oracle Corporation Proprietary Linux, Windows,
Unix

PostgreSQL PostgreSQL Global
Development Group

Postgres Cross-platform

OpenEdge Advanced Business
Language (formerly Progress 4GL)

Progress Software
Corporation

Proprietary Cross-platform

Valentina Paradigma Software Proprietary Windows, Linux,
Mac OS X

Web site [3]

Virtuoso Universal Server OpenLink Software GPLv2 or
proprietary

Cross-platform

VMDS (Version Managed Data Store) GE Energy, a division of
General Electric

Proprietary ? GIS for public utilities; can be
stored inside Oracle Database

WakandaDB 4D AGPLv3 or
proprietary

Windows, Linux,
Mac OS X

Based on REST and Server-Side
JavaScript

Zope Object Database Zope Corporation Zope Public
License

Cross-platform For Python, also included in Zope
web application server

http://en.wikipedia.org/w/index.php?title=Software_license
http://en.wikipedia.org/w/index.php?title=Operating_system
http://en.wikipedia.org/w/index.php?title=Adaptive_Server_Enterprise
http://en.wikipedia.org/w/index.php?title=SAP_AG
http://en.wikipedia.org/w/index.php?title=Proprietary_software
http://en.wikipedia.org/w/index.php?title=CUBRID
http://en.wikipedia.org/w/index.php?title=NHN_Corporation
http://en.wikipedia.org/w/index.php?title=GNU_GPL
http://en.wikipedia.org/w/index.php?title=BSD_license
http://en.wikipedia.org/w/index.php?title=IBM_DB2
http://en.wikipedia.org/w/index.php?title=IBM
http://en.wikipedia.org/w/index.php?title=GigaBASE
http://en.wikipedia.org/w/index.php?title=MIT_License
http://sourceforge.net/projects/gigabase/
http://en.wikipedia.org/w/index.php?title=Greenplum
http://en.wikipedia.org/w/index.php?title=Greenplum
http://en.wikipedia.org/w/index.php?title=EMC_Corporation
http://en.wikipedia.org/w/index.php?title=Informix
http://en.wikipedia.org/w/index.php?title=IBM
http://en.wikipedia.org/w/index.php?title=InterSystems_Cach%C3%A9
http://en.wikipedia.org/w/index.php?title=InterSystems
http://en.wikipedia.org/w/index.php?title=LogicSQL
http://webdocs.cs.ualberta.ca/~yuan/databases/index.html
http://en.wikipedia.org/w/index.php?title=Microsoft_SQL_Server
http://en.wikipedia.org/w/index.php?title=Microsoft_Corporation
http://en.wikipedia.org/w/index.php?title=Oracle_Database
http://en.wikipedia.org/w/index.php?title=Oracle_Corporation
http://en.wikipedia.org/w/index.php?title=PostgreSQL
http://en.wikipedia.org/w/index.php?title=Postgres_License
http://en.wikipedia.org/w/index.php?title=OpenEdge_Advanced_Business_Language
http://en.wikipedia.org/w/index.php?title=OpenEdge_Advanced_Business_Language
http://en.wikipedia.org/w/index.php?title=Progress_Software_Corporation
http://en.wikipedia.org/w/index.php?title=Progress_Software_Corporation
http://en.wikipedia.org/w/index.php?title=Valentina_%28database%29
http://en.wikipedia.org/w/index.php?title=Paradigma_Software
http://www.valentina-db.com/
http://en.wikipedia.org/w/index.php?title=Virtuoso_Universal_Server
http://en.wikipedia.org/w/index.php?title=OpenLink_Software
http://en.wikipedia.org/w/index.php?title=GNU_GPL
http://en.wikipedia.org/w/index.php?title=VMDS
http://en.wikipedia.org/w/index.php?title=GE_Energy
http://en.wikipedia.org/w/index.php?title=General_Electric
http://en.wikipedia.org/w/index.php?title=Wakanda_%28software%29
http://en.wikipedia.org/w/index.php?title=4th_Dimension
http://en.wikipedia.org/w/index.php?title=Affero_General_Public_License
http://en.wikipedia.org/w/index.php?title=Zope_Object_Database
http://en.wikipedia.org/w/index.php?title=Zope_Public_License
http://en.wikipedia.org/w/index.php?title=Zope_Public_License
http://en.wikipedia.org/w/index.php?title=Zope

Comparison of object-relational database management systems 186

Object features
Information about what fundamental ORDBMSes features are implemented natively.

Type Method Type inheritance Table inheritance

CUBRID Yes Yes Yes Yes

LogicSQL
[4] ? ? ? ?

Oracle Yes Yes[5] Yes Yes

OpenLink Virtuoso Yes Yes Yes Yes

PostgreSQL Yes Yes Yes Yes

Informix Yes Yes Yes Yes

WakandaDB Yes Yes Yes Yes

Data types
Information about what data types are implemented natively.

Array List Set Multiset Object reference

CUBRID Yes Yes Yes Yes Yes

LogicSQL ? ? ? ? ?

Oracle Yes Yes Yes Yes Yes

OpenLink Virtuoso Yes Yes Yes Yes Yes

PostgreSQL Yes Yes Yes Yes Yes

Informix No Yes Yes Yes Yes

References
[1] http:/ / sourceforge. net/ projects/ gigabase/
[2] http:/ / webdocs. cs. ualberta. ca/ ~yuan/ databases/ index. html
[3] http:/ / www. valentina-db. com/
[4] http:/ / webdocs. cs. ualberta. ca/ ~yuan/ databases/ index. html
[5][5] No private methods, no way to call super method from a child.

External links
• Arvin.dk (http:/ / troels. arvin. dk/ db/ rdbms/), Comparison of different SQL implementations

http://en.wikipedia.org/w/index.php?title=Datatype
http://en.wikipedia.org/w/index.php?title=Method_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Inheritance_%28object-oriented_programming%29
http://en.wikipedia.org/w/index.php?title=CUBRID
http://en.wikipedia.org/w/index.php?title=LogicSQL
http://en.wikipedia.org/w/index.php?title=Oracle_database
http://en.wikipedia.org/w/index.php?title=Virtuoso_Universal_Server
http://en.wikipedia.org/w/index.php?title=PostgreSQL
http://en.wikipedia.org/w/index.php?title=Informix
http://en.wikipedia.org/w/index.php?title=Wakanda_%28software%29
http://en.wikipedia.org/w/index.php?title=Array_data_type
http://en.wikipedia.org/w/index.php?title=List_%28computing%29
http://en.wikipedia.org/w/index.php?title=Set_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Multiset
http://en.wikipedia.org/w/index.php?title=Reference_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=CUBRID
http://en.wikipedia.org/w/index.php?title=LogicSQL
http://en.wikipedia.org/w/index.php?title=Oracle_database
http://en.wikipedia.org/w/index.php?title=Virtuoso_Universal_Server
http://en.wikipedia.org/w/index.php?title=PostgreSQL
http://en.wikipedia.org/w/index.php?title=Informix
http://sourceforge.net/projects/gigabase/
http://webdocs.cs.ualberta.ca/~yuan/databases/index.html
http://www.valentina-db.com/
http://webdocs.cs.ualberta.ca/~yuan/databases/index.html
http://troels.arvin.dk/db/rdbms/

List of relational database management systems 187

List of relational database management systems
This is a list of relational database management systems.

List of Software
•• 4th Dimension
•• Adabas D
•• Alpha Five
•• Apache Cassandra
•• Apache Derby
•• Aster Data
•• Altibase
•• BlackRay
•• CA-Datacom
•• Clarion
•• Clustrix
•• CSQL
•• CUBRID
•• Daffodil database
•• DataEase
•• Database Management Library
•• Dataphor
•• dBase
• Derby aka Java DB
•• Empress Embedded Database
•• EXASolution
•• EnterpriseDB
•• eXtremeDB
•• FileMaker Pro
•• Firebird
•• Greenplum
•• GroveSite
•• H2
•• Helix database
•• HSQLDB
•• IBM DB2
•• IBM Lotus Approach
•• IBM DB2 Express-C
•• Infobright
•• Informix
•• Ingres
•• InterBase
•• InterSystems Caché
•• GT.M
•• Linter
•• MariaDB

http://en.wikipedia.org/w/index.php?title=4th_Dimension_%28Software%29
http://en.wikipedia.org/w/index.php?title=Adabas_D
http://en.wikipedia.org/w/index.php?title=Alpha_Five
http://en.wikipedia.org/w/index.php?title=Apache_Cassandra
http://en.wikipedia.org/w/index.php?title=Apache_Derby
http://en.wikipedia.org/w/index.php?title=Aster_Data_Systems
http://en.wikipedia.org/w/index.php?title=Altibase
http://en.wikipedia.org/w/index.php?title=BlackRay
http://en.wikipedia.org/w/index.php?title=DATACOM/DB
http://en.wikipedia.org/w/index.php?title=Clarion_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Clustrix
http://en.wikipedia.org/w/index.php?title=CSQL
http://en.wikipedia.org/w/index.php?title=CUBRID
http://en.wikipedia.org/w/index.php?title=Daffodil_database
http://en.wikipedia.org/w/index.php?title=DataEase
http://en.wikipedia.org/w/index.php?title=Database_Management_Library
http://en.wikipedia.org/w/index.php?title=Dataphor
http://en.wikipedia.org/w/index.php?title=DBase
http://en.wikipedia.org/w/index.php?title=Apache_Derby
http://en.wikipedia.org/w/index.php?title=Java_DB
http://en.wikipedia.org/w/index.php?title=Empress_database
http://en.wikipedia.org/w/index.php?title=EXASOL
http://en.wikipedia.org/w/index.php?title=EnterpriseDB
http://en.wikipedia.org/w/index.php?title=EXtremeDB
http://en.wikipedia.org/w/index.php?title=FileMaker_Pro
http://en.wikipedia.org/w/index.php?title=Firebird_%28database_server%29
http://en.wikipedia.org/w/index.php?title=Greenplum
http://en.wikipedia.org/w/index.php?title=GroveSite
http://en.wikipedia.org/w/index.php?title=H2_%28DBMS%29
http://en.wikipedia.org/w/index.php?title=Helix_database
http://en.wikipedia.org/w/index.php?title=HSQLDB
http://en.wikipedia.org/w/index.php?title=IBM_DB2
http://en.wikipedia.org/w/index.php?title=IBM_Lotus_Approach
http://en.wikipedia.org/w/index.php?title=IBM_DB2_Express-C
http://en.wikipedia.org/w/index.php?title=Infobright
http://en.wikipedia.org/w/index.php?title=Informix
http://en.wikipedia.org/w/index.php?title=Ingres_%28database%29
http://en.wikipedia.org/w/index.php?title=InterBase
http://en.wikipedia.org/w/index.php?title=InterSystems_Cach%C3%A9
http://en.wikipedia.org/w/index.php?title=GT.M
http://en.wikipedia.org/w/index.php?title=Linter_SQL_RDBMS
http://en.wikipedia.org/w/index.php?title=MariaDB

List of relational database management systems 188

•• MaxDB
•• MemSQL
•• Microsoft Access
• Microsoft Jet Database Engine (part of Microsoft Access)
•• Microsoft SQL Server
•• Microsoft SQL Server Express
•• Microsoft Visual FoxPro
•• Mimer SQL
•• MonetDB
•• mSQL
•• MySQL
•• Netezza
•• NexusDB
•• NonStop SQL
•• Openbase
•• OpenLink Virtuoso (Open Source Edition)
•• OpenLink Virtuoso Universal Server
•• OpenOffice.org Base
•• Oracle
• Oracle Rdb for OpenVMS
•• Panorama
•• Pervasive PSQL
•• Polyhedra
•• PostgreSQL
•• Postgres Plus Advanced Server
•• Progress Software
•• RDM Embedded
•• RDM Server
•• The SAS system
•• SAND CDBMS
•• SAP HANA
•• SAP Sybase Adaptive Server Enterprise
•• SAP Sybase IQ
• SQL Anywhere (formerly known as Sybase Adaptive Server Anywhere and Watcom SQL)
•• ScimoreDB
•• SmallSQL
•• solidDB
•• SQLBase
•• SQLite
•• Sybase Advantage Database Server
•• Teradata
•• TimesTen
•• txtSQL
•• mizanSQL
•• Unisys RDMS 2200
•• UniData
•• UniVerse

http://en.wikipedia.org/w/index.php?title=MaxDB
http://en.wikipedia.org/w/index.php?title=MemSQL
http://en.wikipedia.org/w/index.php?title=Microsoft_Access
http://en.wikipedia.org/w/index.php?title=Microsoft_Jet_Database_Engine
http://en.wikipedia.org/w/index.php?title=Microsoft_Access
http://en.wikipedia.org/w/index.php?title=Microsoft_SQL_Server
http://en.wikipedia.org/w/index.php?title=Microsoft_SQL_Server_Express
http://en.wikipedia.org/w/index.php?title=Microsoft_Visual_FoxPro
http://en.wikipedia.org/w/index.php?title=Mimer_SQL
http://en.wikipedia.org/w/index.php?title=MonetDB
http://en.wikipedia.org/w/index.php?title=MSQL
http://en.wikipedia.org/w/index.php?title=MySQL
http://en.wikipedia.org/w/index.php?title=Netezza
http://en.wikipedia.org/w/index.php?title=Nexusdb
http://en.wikipedia.org/w/index.php?title=NonStop_SQL
http://en.wikipedia.org/w/index.php?title=Openbase
http://en.wikipedia.org/w/index.php?title=OpenLinkVirtuoso
http://en.wikipedia.org/w/index.php?title=Virtuoso_Universal_Server
http://en.wikipedia.org/w/index.php?title=OpenOffice.org_Base
http://en.wikipedia.org/w/index.php?title=Oracle_database
http://en.wikipedia.org/w/index.php?title=Oracle_Rdb
http://en.wikipedia.org/w/index.php?title=OpenVMS
http://en.wikipedia.org/w/index.php?title=Panorama_%28database_engine%29
http://en.wikipedia.org/w/index.php?title=Pervasive_PSQL
http://en.wikipedia.org/w/index.php?title=Polyhedra_DBMS
http://en.wikipedia.org/w/index.php?title=PostgreSQL
http://en.wikipedia.org/w/index.php?title=Postgres_Plus_Advanced_Server
http://en.wikipedia.org/w/index.php?title=Progress_Software
http://en.wikipedia.org/w/index.php?title=RDM_Embedded
http://en.wikipedia.org/w/index.php?title=RDM_Server
http://en.wikipedia.org/w/index.php?title=SAS_System
http://en.wikipedia.org/w/index.php?title=SAND_CDBMS
http://en.wikipedia.org/w/index.php?title=SAP_HANA
http://en.wikipedia.org/w/index.php?title=Adaptive_Server_Enterprise
http://en.wikipedia.org/w/index.php?title=Sybase_IQ
http://en.wikipedia.org/w/index.php?title=SQL_Anywhere
http://en.wikipedia.org/w/index.php?title=ScimoreDB
http://en.wikipedia.org/w/index.php?title=SmallSQL
http://en.wikipedia.org/w/index.php?title=SolidDB
http://en.wikipedia.org/w/index.php?title=SQLBase
http://en.wikipedia.org/w/index.php?title=SQLite
http://en.wikipedia.org/w/index.php?title=Advantage_Database_Server
http://en.wikipedia.org/w/index.php?title=Teradata
http://en.wikipedia.org/w/index.php?title=TimesTen
http://en.wikipedia.org/w/index.php?title=TxtSQL
http://en.wikipedia.org/w/index.php?title=MizanSQL
http://en.wikipedia.org/w/index.php?title=Unisys_OS_2200_databases
http://en.wikipedia.org/w/index.php?title=Rocket_U2
http://en.wikipedia.org/w/index.php?title=Rocket_U2

List of relational database management systems 189

•• Vertica
•• VMDS

Historical
• Britton Lee IDMs
•• Cornerstone
•• IBM System R
•• MICRO Information Management System
•• Oracle Rdb
•• Paradox
•• Pick
•• PRTV
•• QBE
•• IBM SQL/DS
•• Sybase SQL Server

Relational by the Date-Darwen-Pascal Model

Current
• Alphora Dataphor (a proprietary virtual, federated DBMS and RAD MS .Net IDE).
• Rel (free Java implementation).

Obsolete
• IBM Business System 12
• IBM IS1
• IBM PRTV (ISBL)
•• Multics Relational Data Store

http://en.wikipedia.org/w/index.php?title=Vertica
http://en.wikipedia.org/w/index.php?title=VMDS
http://en.wikipedia.org/w/index.php?title=Britton_Lee%2C_Inc.
http://en.wikipedia.org/w/index.php?title=Cornerstone_%28software%29
http://en.wikipedia.org/w/index.php?title=IBM_System_R
http://en.wikipedia.org/w/index.php?title=MICRO_Information_Management_System
http://en.wikipedia.org/w/index.php?title=Oracle_Rdb
http://en.wikipedia.org/w/index.php?title=Paradox_%28database%29
http://en.wikipedia.org/w/index.php?title=Pick_Operating_system
http://en.wikipedia.org/w/index.php?title=PRTV
http://en.wikipedia.org/w/index.php?title=Query_by_Example
http://en.wikipedia.org/w/index.php?title=IBM_SQL/DS
http://en.wikipedia.org/w/index.php?title=Sybase_SQL_Server
http://en.wikipedia.org/w/index.php?title=Dataphor
http://en.wikipedia.org/w/index.php?title=Rel_%28DBMS%29
http://en.wikipedia.org/w/index.php?title=IBM
http://en.wikipedia.org/w/index.php?title=Business_System_12
http://en.wikipedia.org/w/index.php?title=IBM_IS1
http://en.wikipedia.org/w/index.php?title=PRTV
http://en.wikipedia.org/w/index.php?title=Multics_Relational_Data_Store

Comparison of relational database management systems 190

Comparison of relational database management
systems
The following tables compare general and technical information for a number of relational database management
systems. Please see the individual products' articles for further information. This article is not all-inclusive or
necessarily up to date. Unless otherwise specified in footnotes, comparisons are based on the stable versions without
any add-ons, extensions or external programs.

General information

Maintainer First public
release date

Latest stable
version

Latest release
date

Software license

4D (4th Dimension) 4D S.A.S. 1984 v13.2 2012-11-12 Proprietary

ADABAS Software AG 1970 8.1 2013-06 Proprietary

Adaptive Server Enterprise Sybase 1987 15.7 Proprietary

Advantage Database Server
(ADS)

Sybase 1992 11.1 2012 Proprietary

Altibase Altibase Corp. 2000 6.1.1 2012-04-01 Proprietary

Apache Derby Apache 2004 10.10.1.1 2013-04-15 Apache License

Clustrix Clustrix 2010 v5.0 2013-05-01 Proprietary

CUBRID NHN Corporation 2008-11 8.4.1 2012-02-24 GPL v2

Datacom CA, Inc. ? 11.2 Proprietary

DB2 IBM 1983 10.5 2013-04-23 Proprietary

Drizzle Brian Aker 2008 7.1.36 2012-05-23 BSD, GPL v2

Empress Embedded Database Empress Software Inc 1979 10.20 2010-03 Proprietary

EXASolution EXASOL AG 2004 4.1 2012-07-17 Proprietary

Firebird Firebird project 2000-07-25 2.5.2 2013-03-24 IPL and IDPL

HSQLDB HSQL Development Group 2001 2.2.9[1] 2013-07-08 BSD

H2 H2 Software 2005 1.3.171 2013-03-17 EPL and modified MPL

Informix Dynamic Server IBM 1980 12.10.xC1 2013-03-26 Proprietary

Ingres Ingres Corp. 1974 Ingres
Database 10

2010-10-12 GPL and Proprietary

InterBase Embarcadero 1984 InterBase XE 2010-09-21 Proprietary

Linter SQL RDBMS RELEX Group 1990 6.x 2013-08-26 Proprietary

LucidDB The Eigenbase Project 2007-01 0.9.3 GPL v2

MariaDB MariaDB Community 2010-02-01 5.5.30 2013-03-12 GPL v2

MaxDB SAP AG 2003-05 7.6 2008-01 Proprietary

Microsoft Access (JET) Microsoft 1992 15 (2013) 2012-10-02 Proprietary

Microsoft Visual Foxpro Microsoft 1984 9 (2005) 2007-10-11 Proprietary

Microsoft SQL Server Microsoft 1989 2012 (v11) Proprietary

http://en.wikipedia.org/w/index.php?title=Software_license
http://en.wikipedia.org/w/index.php?title=4th_Dimension_%28Software%29
http://en.wikipedia.org/w/index.php?title=Proprietary_software
http://en.wikipedia.org/w/index.php?title=ADABAS
http://en.wikipedia.org/w/index.php?title=Software_AG
http://en.wikipedia.org/w/index.php?title=Proprietary_software
http://en.wikipedia.org/w/index.php?title=Adaptive_Server_Enterprise
http://en.wikipedia.org/w/index.php?title=Sybase
http://en.wikipedia.org/w/index.php?title=Proprietary_software
http://en.wikipedia.org/w/index.php?title=Advantage_Database_Server_%28ADS%29
http://en.wikipedia.org/w/index.php?title=Advantage_Database_Server_%28ADS%29
http://en.wikipedia.org/w/index.php?title=Sybase
http://en.wikipedia.org/w/index.php?title=Proprietary_software
http://en.wikipedia.org/w/index.php?title=Altibase
http://en.wikipedia.org/w/index.php?title=Proprietary_software
http://en.wikipedia.org/w/index.php?title=Apache_Derby
http://en.wikipedia.org/w/index.php?title=Apache_Software_Foundation
http://en.wikipedia.org/w/index.php?title=Apache_license
http://en.wikipedia.org/w/index.php?title=Clustrix
http://en.wikipedia.org/w/index.php?title=Clustrix
http://en.wikipedia.org/w/index.php?title=Proprietary_Software
http://en.wikipedia.org/w/index.php?title=CUBRID
http://en.wikipedia.org/w/index.php?title=GNU_General_Public_License
http://en.wikipedia.org/w/index.php?title=CA_Datacom
http://en.wikipedia.org/w/index.php?title=CA%2C_Inc.
http://en.wikipedia.org/w/index.php?title=Proprietary_software
http://en.wikipedia.org/w/index.php?title=IBM_DB2
http://en.wikipedia.org/w/index.php?title=IBM
http://en.wikipedia.org/w/index.php?title=Proprietary_software
http://en.wikipedia.org/w/index.php?title=Drizzle_%28database_server%29
http://en.wikipedia.org/w/index.php?title=Brian_Aker
http://en.wikipedia.org/w/index.php?title=BSD_License
http://en.wikipedia.org/w/index.php?title=GNU_General_Public_License
http://en.wikipedia.org/w/index.php?title=Empress_database
http://en.wikipedia.org/w/index.php?title=Proprietary_software
http://en.wikipedia.org/w/index.php?title=EXASolution
http://en.wikipedia.org/w/index.php?title=EXASOL
http://en.wikipedia.org/w/index.php?title=Proprietary_software
http://en.wikipedia.org/w/index.php?title=Firebird_%28database_server%29
http://en.wikipedia.org/w/index.php?title=HSQLDB
http://en.wikipedia.org/w/index.php?title=BSD_license
http://en.wikipedia.org/w/index.php?title=H2_%28DBMS%29
http://en.wikipedia.org/w/index.php?title=Eclipse_Public_License
http://en.wikipedia.org/w/index.php?title=Mozilla_Public_License
http://en.wikipedia.org/w/index.php?title=Informix_Dynamic_Server
http://en.wikipedia.org/w/index.php?title=IBM
http://en.wikipedia.org/w/index.php?title=Proprietary_software
http://en.wikipedia.org/w/index.php?title=Ingres_%28database%29
http://en.wikipedia.org/w/index.php?title=Ingres_%28database%29
http://en.wikipedia.org/w/index.php?title=GNU_General_Public_License
http://en.wikipedia.org/w/index.php?title=Proprietary_software
http://en.wikipedia.org/w/index.php?title=InterBase
http://en.wikipedia.org/w/index.php?title=InterBase
http://en.wikipedia.org/w/index.php?title=Proprietary_software
http://en.wikipedia.org/w/index.php?title=Linter_SQL_RDBMS
http://en.wikipedia.org/w/index.php?title=RELEX_Group
http://en.wikipedia.org/w/index.php?title=Proprietary_software
http://en.wikipedia.org/w/index.php?title=LucidDB
http://en.wikipedia.org/w/index.php?title=GNU_General_Public_License
http://en.wikipedia.org/w/index.php?title=MariaDB
http://en.wikipedia.org/w/index.php?title=MariaDB
http://en.wikipedia.org/w/index.php?title=GNU_General_Public_License
http://en.wikipedia.org/w/index.php?title=MaxDB
http://en.wikipedia.org/w/index.php?title=SAP_AG
http://en.wikipedia.org/w/index.php?title=Proprietary_software
http://en.wikipedia.org/w/index.php?title=Microsoft_Access
http://en.wikipedia.org/w/index.php?title=Microsoft
http://en.wikipedia.org/w/index.php?title=Proprietary_software
http://en.wikipedia.org/w/index.php?title=Microsoft_Visual_Foxpro
http://en.wikipedia.org/w/index.php?title=Microsoft
http://en.wikipedia.org/w/index.php?title=Proprietary_software
http://en.wikipedia.org/w/index.php?title=Microsoft_SQL_Server
http://en.wikipedia.org/w/index.php?title=Microsoft
http://en.wikipedia.org/w/index.php?title=Proprietary_software

Comparison of relational database management systems 191

Microsoft SQL Server
Compact (Embedded
Database)

Microsoft 2000 2011 (v4.0) Proprietary

MonetDB/SQL The MonetDB Developer
Team

2004 11.9.1 2012-04 MonetDB Public License
v1.1

mSQL Hughes Technologies 1994 3.9 2011-02 Proprietary

MySQL Sun Microsystems (now
Oracle Corporation)

1995-11 5.6.31 2013-07-30 GPL or Proprietary

MemSQL MemSQL 2012-06 1.8 (2012) 2012-12 Proprietary

Nexusdb Nexus Database Systems
Pty Ltd

2003-09 3.04 2010-05-08 Proprietary

HP NonStop SQL Hewlett-Packard 1987 SQL/MX 2.3 Proprietary

Omnis Studio TigerLogic Inc 1982-07 4.3.1 Release
1no

2008-05 Proprietary

OpenBase SQL OpenBase International 1991 11.0.0 Proprietary

OpenEdge Progress Software
Corporation

1984 11.0 Proprietary

OpenLink Virtuoso OpenLink Software 1998 7.x 2013-08-05 GPL or Proprietary

Oracle Oracle Corporation 1979-11 12c Release 1 2013-06-25 Proprietary

Oracle Rdb Oracle Corporation 1984 7.2.5.3.0 2013-07-16 Proprietary

Paradox Corel Corporation 1985 11 2003 Proprietary

Pervasive PSQL Pervasive Software 1982 v11 SP3 2013 Proprietary

Polyhedra DBMS ENEA AB 1993 8.7 2013-03 Proprietary

PostgreSQL PostgreSQL Global
Development Group

1989-06 9.3.1 2013-10-10 PostgreSQL Licence (a
liberal Open Source license)

R:Base R:BASE Technologies 1982 9.5 Proprietary

RDM Raima Inc. 1984 11.0 2012-06-29 Proprietary

RDM Server Raima Inc. 1993 8.4 2012-10-31 Proprietary

SAP HANA SAP AG 2010 1.0 Proprietary

ScimoreDB Scimore 2005 3.0 2008-03-03 Proprietary

SmallSQL SmallSQL 2005-04-16 0.20 2008-12 LGPL

SQL Anywhere Sybase 1992 12.0 2010-07-09 Proprietary

SQLBase Unify Corp. 1982 11.5 2008-11 Proprietary

SQLite D. Richard Hipp 2000-08-17 3.8.0.2 2013-09-03 Public domain

Superbase Superbase 1984 Scientific
(2004)

Proprietary

Teradata Teradata 1984 14.10 Proprietary

UniData Rocket Software 1988 7.2.12 2011-10 Proprietary

Xeround Cloud Database Xeround Systems 2010 3.1 2011-10-11 SaaS

http://en.wikipedia.org/w/index.php?title=SQL_Server_Compact
http://en.wikipedia.org/w/index.php?title=SQL_Server_Compact
http://en.wikipedia.org/w/index.php?title=SQL_Server_Compact
http://en.wikipedia.org/w/index.php?title=Microsoft
http://en.wikipedia.org/w/index.php?title=Proprietary_software
http://en.wikipedia.org/w/index.php?title=MonetDB
http://en.wikipedia.org/w/index.php?title=MSQL
http://en.wikipedia.org/w/index.php?title=Proprietary_software
http://en.wikipedia.org/w/index.php?title=MySQL
http://en.wikipedia.org/w/index.php?title=Sun_Microsystems
http://en.wikipedia.org/w/index.php?title=Oracle_Corporation
http://en.wikipedia.org/w/index.php?title=GNU_General_Public_License
http://en.wikipedia.org/w/index.php?title=Proprietary_software
http://en.wikipedia.org/w/index.php?title=MemSQL
http://en.wikipedia.org/w/index.php?title=MemSQL
http://en.wikipedia.org/w/index.php?title=Proprietary_software
http://en.wikipedia.org/w/index.php?title=Nexusdb
http://en.wikipedia.org/w/index.php?title=Proprietary_software
http://en.wikipedia.org/w/index.php?title=Nonstop_sql
http://en.wikipedia.org/w/index.php?title=Hewlett-Packard
http://en.wikipedia.org/w/index.php?title=Proprietary_software
http://en.wikipedia.org/w/index.php?title=Omnis
http://en.wikipedia.org/w/index.php?title=Proprietary_software
http://en.wikipedia.org/w/index.php?title=OpenBase
http://en.wikipedia.org/w/index.php?title=Proprietary_software
http://en.wikipedia.org/w/index.php?title=OpenEdge_Database
http://en.wikipedia.org/w/index.php?title=Progress_Software_Corporation
http://en.wikipedia.org/w/index.php?title=Progress_Software_Corporation
http://en.wikipedia.org/w/index.php?title=Proprietary_software
http://en.wikipedia.org/w/index.php?title=Virtuoso_Universal_Server
http://en.wikipedia.org/w/index.php?title=GNU_General_Public_License
http://en.wikipedia.org/w/index.php?title=Proprietary_software
http://en.wikipedia.org/w/index.php?title=Oracle_Database
http://en.wikipedia.org/w/index.php?title=Oracle_Corporation
http://en.wikipedia.org/w/index.php?title=Proprietary_software
http://en.wikipedia.org/w/index.php?title=Oracle_Rdb
http://en.wikipedia.org/w/index.php?title=Oracle_Corporation
http://en.wikipedia.org/w/index.php?title=Proprietary_software
http://en.wikipedia.org/w/index.php?title=Paradox_%28database%29
http://en.wikipedia.org/w/index.php?title=Proprietary_software
http://en.wikipedia.org/w/index.php?title=Pervasive_PSQL
http://en.wikipedia.org/w/index.php?title=Pervasive_Software
http://en.wikipedia.org/w/index.php?title=Proprietary_software
http://en.wikipedia.org/w/index.php?title=Polyhedra_DBMS
http://en.wikipedia.org/w/index.php?title=ENEA_AB
http://en.wikipedia.org/w/index.php?title=Proprietary_software
http://en.wikipedia.org/w/index.php?title=PostgreSQL
http://en.wikipedia.org/w/index.php?title=R:Base
http://en.wikipedia.org/w/index.php?title=Proprietary_software
http://en.wikipedia.org/w/index.php?title=RDM_Server
http://en.wikipedia.org/w/index.php?title=Proprietary_Software
http://en.wikipedia.org/w/index.php?title=RDM_Server
http://en.wikipedia.org/w/index.php?title=Proprietary_Software
http://en.wikipedia.org/w/index.php?title=SAP_HANA
http://en.wikipedia.org/w/index.php?title=SAP_AG
http://en.wikipedia.org/w/index.php?title=Proprietary_software
http://en.wikipedia.org/w/index.php?title=ScimoreDB
http://en.wikipedia.org/w/index.php?title=Proprietary_Software
http://en.wikipedia.org/w/index.php?title=SmallSQL
http://en.wikipedia.org/w/index.php?title=SmallSQL
http://en.wikipedia.org/w/index.php?title=LGPL
http://en.wikipedia.org/w/index.php?title=SQL_Anywhere
http://en.wikipedia.org/w/index.php?title=Sybase
http://en.wikipedia.org/w/index.php?title=Proprietary_software
http://en.wikipedia.org/w/index.php?title=SQLBase
http://en.wikipedia.org/w/index.php?title=Proprietary_Software
http://en.wikipedia.org/w/index.php?title=SQLite
http://en.wikipedia.org/w/index.php?title=D._Richard_Hipp
http://en.wikipedia.org/w/index.php?title=Public_domain
http://en.wikipedia.org/w/index.php?title=Superbase_database
http://en.wikipedia.org/w/index.php?title=Superbase_database
http://en.wikipedia.org/w/index.php?title=Proprietary_software
http://en.wikipedia.org/w/index.php?title=Teradata
http://en.wikipedia.org/w/index.php?title=Teradata
http://en.wikipedia.org/w/index.php?title=Proprietary_software
http://en.wikipedia.org/w/index.php?title=UniData
http://en.wikipedia.org/w/index.php?title=Proprietary_software
http://en.wikipedia.org/w/index.php?title=Xeround
http://en.wikipedia.org/w/index.php?title=Software_as_a_service

Comparison of relational database management systems 192

Operating system support
The operating systems that the RDBMSes can run on.

Windows OS X Linux BSD UNIX AmigaOS Symbian z/OS iOS Android

4th Dimension Yes Yes No No No No No No No No

ADABAS Yes No Yes No Yes No No Yes No No

Adaptive Server Enterprise Yes No Yes Yes Yes No No No Yes Yes

Advantage Database Server Yes No Yes No No No No No No No

Altibase Yes No Yes No Yes No No No No No

Apache Derby Yes Yes Yes Yes Yes No No Yes ? No

Clustrix No No Yes No Yes No No No No No

CUBRID Yes Partial Yes No No No No No No No

Drizzle No Yes Yes Yes Yes No No No No No

DB2
Yes

Yes
(Express C)

Yes No Yes No No Yes Yes No

Empress Embedded Database Yes Yes Yes Yes Yes No No No No Yes

EXASolution No No Yes No No No No No No No

Firebird Yes Yes Yes Yes Yes No No Maybe No No

HSQLDB Yes Yes Yes Yes Yes No No Yes ? ?

H2 Yes Yes Yes Yes Yes No No Yes ? Yes

FileMaker Yes Yes No No No No No No Yes No

Informix Dynamic Server Yes Yes Yes Yes Yes No No Yes No No

Ingres Yes Yes Yes Yes Yes No No Partial No No

InterBase
Yes Yes Yes No

Yes
(Solaris)

No No No No No

Linter SQL RDBMS
Yes Yes Yes Yes Yes No No

Under Linux on
System z

No Yes

LucidDB Yes Yes Yes No No No No No No No

MariaDB Yes Yes Yes Yes Yes No No No ? ?

MaxDB Yes No Yes No Yes No No Maybe No No

Microsoft Access (JET) Yes No No No No No No No No No

Microsoft Visual Foxpro Yes No No No No No No No No No

Microsoft SQL Server Yes No No No No No No No No No

Microsoft SQL Server Compact
(Embedded Database)

Yes No No No No No No No No No

MonetDB/SQL Yes Yes Yes No Yes No No No ? ?

MySQL Yes Yes Yes Yes Yes Yes Yes Yes ? Yes[2]

Omnis Studio Yes Yes Yes No No No No No No No

OpenBase SQL Yes Yes Yes Yes Yes No No No No No

OpenEdge Yes No Yes No Yes No No No No No

OpenLink Virtuoso Yes Yes Yes Yes Yes No No Yes No No

http://en.wikipedia.org/w/index.php?title=Operating_system
http://en.wikipedia.org/w/index.php?title=Microsoft_Windows
http://en.wikipedia.org/w/index.php?title=OS_X
http://en.wikipedia.org/w/index.php?title=Linux
http://en.wikipedia.org/w/index.php?title=BSD
http://en.wikipedia.org/w/index.php?title=UNIX
http://en.wikipedia.org/w/index.php?title=AmigaOS
http://en.wikipedia.org/w/index.php?title=Symbian
http://en.wikipedia.org/w/index.php?title=Z/OS
http://en.wikipedia.org/w/index.php?title=IOS
http://en.wikipedia.org/w/index.php?title=Android_%28operating_system%29
http://en.wikipedia.org/w/index.php?title=4th_Dimension_%28Software%29
http://en.wikipedia.org/w/index.php?title=ADABAS
http://en.wikipedia.org/w/index.php?title=Adaptive_Server_Enterprise
http://en.wikipedia.org/w/index.php?title=Advantage_Database_Server
http://en.wikipedia.org/w/index.php?title=Altibase
http://en.wikipedia.org/w/index.php?title=Apache_Derby
http://en.wikipedia.org/w/index.php?title=Clustrix
http://en.wikipedia.org/w/index.php?title=CUBRID
http://en.wikipedia.org/w/index.php?title=Drizzle_%28database_server%29
http://en.wikipedia.org/w/index.php?title=IBM_DB2
http://en.wikipedia.org/w/index.php?title=IBM_DB2_Express-C
http://en.wikipedia.org/w/index.php?title=Empress_database
http://en.wikipedia.org/w/index.php?title=EXASOL
http://en.wikipedia.org/w/index.php?title=Firebird_%28database_server%29
http://en.wikipedia.org/w/index.php?title=HSQLDB
http://en.wikipedia.org/w/index.php?title=H2_%28DBMS%29
http://en.wikipedia.org/w/index.php?title=FileMaker
http://en.wikipedia.org/w/index.php?title=Informix_Dynamic_Server
http://en.wikipedia.org/w/index.php?title=Ingres_%28database%29
http://en.wikipedia.org/w/index.php?title=InterBase
http://en.wikipedia.org/w/index.php?title=Solaris_%28operating_system%29
http://en.wikipedia.org/w/index.php?title=Linter_SQL_RDBMS
http://en.wikipedia.org/w/index.php?title=Linux_on_System_z
http://en.wikipedia.org/w/index.php?title=Linux_on_System_z
http://en.wikipedia.org/w/index.php?title=LucidDB
http://en.wikipedia.org/w/index.php?title=MariaDB
http://en.wikipedia.org/w/index.php?title=MaxDB
http://en.wikipedia.org/w/index.php?title=Microsoft_Access
http://en.wikipedia.org/w/index.php?title=Microsoft_Visual_Foxpro
http://en.wikipedia.org/w/index.php?title=Microsoft_SQL_Server
http://en.wikipedia.org/w/index.php?title=SQL_Server_Compact
http://en.wikipedia.org/w/index.php?title=SQL_Server_Compact
http://en.wikipedia.org/w/index.php?title=MonetDB
http://en.wikipedia.org/w/index.php?title=MySQL
http://en.wikipedia.org/w/index.php?title=Omnis_Studio
http://en.wikipedia.org/w/index.php?title=OpenBase
http://en.wikipedia.org/w/index.php?title=OpenEdge_Database
http://en.wikipedia.org/w/index.php?title=Virtuoso_Universal_Server

Comparison of relational database management systems 193

Oracle Yes Yes Yes No Yes No No Yes No No

Oracle Rdb No No No No No No No No No No

Pervasive PSQL
Yes

Yes (OEM
only)

Yes No No No No No No No

Polyhedra Yes No Yes No Yes No No No No No

PostgreSQL
Yes Yes Yes Yes Yes No No Under Linux on

System z[3] No Yes

R:Base Yes No No No No No No No No No

RDM Yes Yes Yes Yes Yes No No No Yes No

RDM Server Yes Yes Yes Yes Yes No No No No No

ScimoreDB Yes No No No No No No No No No

SmallSQL Yes Yes Yes Yes Yes No No Yes No No

SQL Anywhere Yes Yes Yes No Yes No No No No Yes

SQLBase Yes No Yes No No No No No No No

SQLite Yes Yes Yes Yes Yes Yes Yes Maybe Yes Yes

Superbase Yes No No No No Yes No No No No

Teradata Yes No Yes No Yes No No No No No

UniData Yes No Yes No Yes No No No No No

UniVerse Yes No Yes No Yes No No No No No

Xeround Cloud Database Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Fundamental features
Information about what fundamental RDBMS features are implemented natively.

ACID Referential
integrity

Transactions Unicode Interface

4th Dimension Yes Yes Yes Yes GUI & SQL

ADABAS
Yes No Yes Yes

proprietary direct call & SQL (via
3rd party)

Adaptive Server Enterprise Yes Yes Yes Yes SQL

Advantage Database Server Yes Yes Yes Yes4 API & SQL

Altibase Yes Yes Yes Yes API & GUI & SQL

Apache Derby Yes Yes Yes Yes SQL

Clustrix Yes Yes Yes Yes SQL

CUBRID Yes Yes Yes Yes GUI & SQL

Drizzle Yes Yes Yes Yes SQL

DB2 Yes Yes Yes Yes GUI & SQL

Empress Embedded Database Yes Yes Yes Yes API & SQL

EXASolution Yes Yes Yes Yes API & GUI & SQL

Firebird Yes Yes Yes Yes SQL

http://en.wikipedia.org/w/index.php?title=Oracle_Database
http://en.wikipedia.org/w/index.php?title=Oracle_Rdb
http://en.wikipedia.org/w/index.php?title=Pervasive_PSQL
http://en.wikipedia.org/w/index.php?title=Polyhedra_DBMS
http://en.wikipedia.org/w/index.php?title=PostgreSQL
http://en.wikipedia.org/w/index.php?title=R:Base
http://en.wikipedia.org/w/index.php?title=RDM_Server
http://en.wikipedia.org/w/index.php?title=ScimoreDB
http://en.wikipedia.org/w/index.php?title=SmallSQL
http://en.wikipedia.org/w/index.php?title=SQL_Anywhere
http://en.wikipedia.org/w/index.php?title=SQLBase
http://en.wikipedia.org/w/index.php?title=SQLite
http://en.wikipedia.org/w/index.php?title=Superbase_database
http://en.wikipedia.org/w/index.php?title=Teradata
http://en.wikipedia.org/w/index.php?title=UniData
http://en.wikipedia.org/w/index.php?title=UniVerse
http://en.wikipedia.org/w/index.php?title=Xeround
http://en.wikipedia.org/w/index.php?title=Unicode
http://en.wikipedia.org/w/index.php?title=4th_Dimension_%28Software%29
http://en.wikipedia.org/w/index.php?title=Graphical_user_interface
http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=ADABAS
http://en.wikipedia.org/w/index.php?title=Adaptive_Server_Enterprise
http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=Advantage_Database_Server
http://en.wikipedia.org/w/index.php?title=API
http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=Altibase
http://en.wikipedia.org/w/index.php?title=API
http://en.wikipedia.org/w/index.php?title=GUI
http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=Apache_Derby
http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=Clustrix
http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=CUBRID
http://en.wikipedia.org/w/index.php?title=Graphical_user_interface
http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=Drizzle_%28database_server%29
http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=IBM_DB2
http://en.wikipedia.org/w/index.php?title=Graphical_user_interface
http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=Empress_database
http://en.wikipedia.org/w/index.php?title=Graphical_user_interface
http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=EXASOL
http://en.wikipedia.org/w/index.php?title=Graphical_user_interface
http://en.wikipedia.org/w/index.php?title=GUI
http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=Firebird_%28database_server%29
http://en.wikipedia.org/w/index.php?title=SQL

Comparison of relational database management systems 194

HSQLDB Yes Yes Yes Yes SQL

H2 Yes Yes Yes Yes SQL

Informix Dynamic Server Yes Yes Yes Yes SQL

Ingres Yes Yes Yes Yes SQL & QUEL

InterBase Yes Yes Yes Yes SQL

Linter SQL RDBMS Yes Yes Yes Yes GUI & SQL

LucidDB Yes No No Yes SQL

MariaDB
Yes2 Partial3

Yes2 except for
DDL[4] Yes

SQL

MaxDB Yes Yes Yes Yes SQL

Microsoft Access (JET) Yes Yes Yes Yes GUI & SQL

Microsoft Visual FoxPro No Yes Yes No GUI & SQL

Microsoft SQL Server Yes Yes Yes Yes GUI & SQL

Microsoft SQL Server Compact
(Embedded Database)

Yes Yes Yes Yes
GUI & SQL

MonetDB/SQL Yes Yes Yes Yes SQL

MySQL
Yes2 Partial3

Yes2 except for
DDL

Yes GUI 5 & SQL

OpenBase SQL Yes Yes Yes Yes GUI & SQL

Oracle Yes Yes Yes except for DDL Yes API & GUI & SQL

Oracle Rdb Yes Yes Yes Yes SQL

OpenLink Virtuoso Yes Yes Yes Yes API & GUI & SQL

Pervasive PSQL Yes Yes Yes Yes6 API & GUI & SQL

Polyhedra DBMS Yes Yes Yes Yes API & SQL

PostgreSQL Yes Yes Yes Yes API & GUI & SQL

RDM Yes Yes Yes Yes SQL & API

RDM Server Yes Yes Yes Yes SQL & API

ScimoreDB Yes Yes Yes Partial SQL

SQL Anywhere Yes Yes Yes Yes SQL

SQLBase Yes Yes Yes Yes API & GUI & SQL

SQLite Yes Yes Yes Optional[5] API & SQL

Teradata Yes Yes Yes Yes SQL

UniData Yes No Yes Yes Multiple

UniVerse Yes No Yes Yes Multiple

Xeround Cloud Database Yes No Yes Yes SQL

ACID Referential
integrity

Transactions Unicode Interface

Note (1): Currently only supports read uncommited transaction isolation. Version 1.9 adds serializable isolation and
version 2.0 will be fully ACID compliant.
Note (2): MySQL provides ACID compliance through the default InnoDB storage engine.

http://en.wikipedia.org/w/index.php?title=HSQLDB
http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=H2_%28DBMS%29
http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=Informix_Dynamic_Server
http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=Ingres_%28database%29
http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=QUEL_query_languages
http://en.wikipedia.org/w/index.php?title=InterBase
http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=Linter_SQL_RDBMS
http://en.wikipedia.org/w/index.php?title=GUI
http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=LucidDB
http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=MariaDB
http://en.wikipedia.org/w/index.php?title=Data_Definition_Language
http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=MaxDB
http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=Microsoft_Access
http://en.wikipedia.org/w/index.php?title=Graphical_user_interface
http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=Microsoft_Visual_FoxPro
http://en.wikipedia.org/w/index.php?title=Graphical_user_interface
http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=Microsoft_SQL_Server
http://en.wikipedia.org/w/index.php?title=Graphical_user_interface
http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=SQL_Server_Compact
http://en.wikipedia.org/w/index.php?title=SQL_Server_Compact
http://en.wikipedia.org/w/index.php?title=Graphical_user_interface
http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=MonetDB
http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=MySQL
http://en.wikipedia.org/w/index.php?title=Data_Definition_Language
http://en.wikipedia.org/w/index.php?title=Graphical_user_interface
http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=OpenBase
http://en.wikipedia.org/w/index.php?title=Graphical_user_interface
http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=Oracle_Database
http://en.wikipedia.org/w/index.php?title=Data_Definition_Language
http://en.wikipedia.org/w/index.php?title=API
http://en.wikipedia.org/w/index.php?title=Graphical_user_interface
http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=Oracle_Rdb
http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=Virtuoso_Universal_Server
http://en.wikipedia.org/w/index.php?title=API
http://en.wikipedia.org/w/index.php?title=Graphical_user_interface
http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=Pervasive_PSQL
http://en.wikipedia.org/w/index.php?title=API
http://en.wikipedia.org/w/index.php?title=Graphical_user_interface
http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=Polyhedra_DBMS
http://en.wikipedia.org/w/index.php?title=API
http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=PostgreSQL
http://en.wikipedia.org/w/index.php?title=API
http://en.wikipedia.org/w/index.php?title=Graphical_user_interface
http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=API
http://en.wikipedia.org/w/index.php?title=RDM_Server
http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=API
http://en.wikipedia.org/w/index.php?title=ScimoreDB
http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=SQL_Anywhere
http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=SQLBase
http://en.wikipedia.org/w/index.php?title=API
http://en.wikipedia.org/w/index.php?title=Graphical_user_interface
http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=SQLite
http://en.wikipedia.org/w/index.php?title=API
http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=Teradata
http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=UniData
http://en.wikipedia.org/w/index.php?title=UniVerse
http://en.wikipedia.org/w/index.php?title=Xeround
http://en.wikipedia.org/w/index.php?title=Unicode
http://en.wikipedia.org/w/index.php?title=Comparison_of_relational_database_management_systems%23feat_1

Comparison of relational database management systems 195

Note (3): "For other [than InnoDB] storage engines, MySQL Server parses and ignores the FOREIGN KEY and
REFERENCES syntax in CREATE TABLE statements. The CHECK clause is parsed but ignored by all storage
engines."
Note (4): Support for Unicode is new in version 10.0.
Note (5): MySQL provides GUI interface through MySQL Workbench.
Note (6): Pervasive PSQL provides UTF-8 storage.

Limits
Information about data size limits.

Max DB
size

Max table
size

Max row
size

Max columns per
row

Max Blob/Clob
size

Max
CHAR size

Max
NUMBER

size

Min DATE
value

Max DATE
value

Max
column

name size

4th
Dimension

Limited ? ? 65,135 200 GB (2 GiB
Unicode)

200 GB (2
GiB

Unicode)

64 bits ? ? ?

Advantage
Database
Server

Unlimited 16 EiB 65,530 B 65,135 / (10+
AvgFieldNameLength)

4 GiB ? 64 bits ? ? 128

Apache
Derby

Unlimited Unlimited Unlimited 1,012 (5,000 in views) 2,147,483,647
chars

254
(VARCHAR:

32,672)

64 bits 0001-01-01 9999-12-31 128

Clustrix Unlimited Unlimited 64 MB on
Appliance,
4 MB on

AWS

? 64 MB 64 MB 64 MB 0001-01-01 9999-12-31 254

CUBRID 2 EB 2 EB Unlimited 6400 Unlimited 1 GB 64 bits 0001-01-01 9999-12-31 254

Drizzle Unlimited 64 TB 8 KB 1,000 4 GB (longtext,
longblob)

64 KB
(text)

64 bits 0001 9999 64

DB2 Unlimited 2 ZB 32,677 B 1,012 2 GB 32 KiB) 64 bits 0001-01-01 9999-12-31 128

Empress
Embedded
Database

Unlimited 263-1
bytes

2 GB 32,767 2 GB 2 GB 64 bits 0000-01-01 9999-12-31 32

EXASolution Unlimited Unlimited Unlimited 10,000 N/A 2 MB 128 bits 0001-01-01 9999-12-31 256

FileMaker 8 TB 8 TB 8 TB 256,000,000 4 GB 10^9
characters

10^9
numbers
w/ range

10^-400 to
10^400

0001-01-01 4000-12-31 100

Firebird Unlimited1 ~32 TB 65,536 B Depends on data types
used

2 GB 32,767 B 64 bits 100 32768 31

HSQLDB 64 TB Unlimited8 Unlimited8 Unlimited8 64 TB7 Unlimited8 Unlimited8 0001-01-01 9999-12-31 128

H2 64 TB Unlimited8 Unlimited8 Unlimited8 64 TB7 Unlimited8 64 bits -99999999 99999999 Unlimited8

Max DB
size

Max table
size

Max row
size

Max columns per
row

Max Blob/Clob
size

Max
CHAR size

Max
NUMBER

size

Min DATE
value

Max DATE
value

Max
column

name size

http://en.wikipedia.org/w/index.php?title=Comparison_of_relational_database_management_systems%23feat_4
http://en.wikipedia.org/w/index.php?title=Comparison_of_relational_database_management_systems%23feat_5
http://en.wikipedia.org/w/index.php?title=MySQL_Workbench
http://en.wikipedia.org/w/index.php?title=Comparison_of_relational_database_management_systems%23feat_6
http://en.wikipedia.org/w/index.php?title=4th_Dimension_%28Software%29
http://en.wikipedia.org/w/index.php?title=4th_Dimension_%28Software%29
http://en.wikipedia.org/w/index.php?title=Gibibyte
http://en.wikipedia.org/w/index.php?title=Unicode
http://en.wikipedia.org/w/index.php?title=Gibibyte
http://en.wikipedia.org/w/index.php?title=Unicode
http://en.wikipedia.org/w/index.php?title=Advantage_Database_Server
http://en.wikipedia.org/w/index.php?title=Advantage_Database_Server
http://en.wikipedia.org/w/index.php?title=Advantage_Database_Server
http://en.wikipedia.org/w/index.php?title=Exbibyte
http://en.wikipedia.org/w/index.php?title=Gibibyte
http://en.wikipedia.org/w/index.php?title=Apache_Derby
http://en.wikipedia.org/w/index.php?title=Apache_Derby
http://en.wikipedia.org/w/index.php?title=Clustrix
http://en.wikipedia.org/w/index.php?title=CUBRID
http://en.wikipedia.org/w/index.php?title=Drizzle_%28database_server%29
http://en.wikipedia.org/w/index.php?title=IBM_DB2
http://en.wikipedia.org/w/index.php?title=Zettabyte
http://en.wikipedia.org/w/index.php?title=Kibibyte
http://en.wikipedia.org/w/index.php?title=Empress_database
http://en.wikipedia.org/w/index.php?title=Empress_database
http://en.wikipedia.org/w/index.php?title=Empress_database
http://en.wikipedia.org/w/index.php?title=EXASOL
http://en.wikipedia.org/w/index.php?title=FileMaker
http://en.wikipedia.org/w/index.php?title=Firebird_%28database_server%29
http://en.wikipedia.org/w/index.php?title=HSQLDB
http://en.wikipedia.org/w/index.php?title=H2_%28DBMS%29

Comparison of relational database management systems 196

Informix
Dynamic
Server

~128 PB ~128 PB 32,765
bytes

(exclusive
of large
objects)

32,765 4 TB 32,765 1032 01/01/000110 12/31/9999 128 bytes

Ingres Unlimited Unlimited 256 KB 1,024 2 GB 32 000 B 64 bits 0001 9999 256

InterBase Unlimited1 ~32 TB 65,536 B Depends on data types
used

2 GB 32,767 B 64 bits 100 32768 31

Linter SQL
RDBMS

Unlimited 230 rows 64 KB (w/o
BLOBs), 4

GB (BLOB)

250 4 GB 4 KB 64 bits 0001-01-01 9999-12-31 66

Microsoft
Access
(JET)

2 GB 2 GB 16 MB 255 64 KB (memo
field), 1 GB

("OLE Object"
field)

255 B (text
field)

32 bits 0100 9999 64

Microsoft
Visual
Foxpro

Unlimited 2 GB 65,500 B 255 2 GB 16 MB 32 bits 0001 9999 10

Microsoft
SQL Server

524,272
TB (32

767 files *
16 TB

max file
size)

524,272
TB

8,060 bytes
(Unlimited)6

30,000 2 GB 2 GB6 126 bits2 0001 9999 128

Microsoft
SQL Server
Compact
(Embedded
Database)

4 GB 4 GB 8,060 bytes 1024 2 GB 4000 154 bits 0001 9999 128

MySQL 5 Unlimited MyISAM
storage

limits: 256
TB;

Innodb
storage

limits: 64
TB

64 KB3 4,0964 4 GB (longtext,
longblob)

64 KB
(text)

64 bits 1000 9999 64

OpenLink
Virtuoso

32 TB per
instance

(Unlimited
via elastic

cluster)

DB size
(or 32 TB)

4 KB 200 2 GB 2 GB 231 0 9999 100

Oracle Unlimited
(4 GB *

block size
per

tablespace)

4 GB *
block size

(with
BIGFILE

tablespace)

8 KB 1,000 Unlimited 32,767 B11 126 bits −4712 9999 30

Max DB
size

Max table
size

Max row
size

Max columns per
row

Max Blob/Clob
size

Max
CHAR size

Max
NUMBER

size

Min DATE
value

Max DATE
value

Max
column

name size

Pervasive
PSQL

4 billion
objects

256 GB 2 GB 1,536 2 GB 8,000 bytes 64 bits 01-01-0001 12-31-9999 128 bytes

http://en.wikipedia.org/w/index.php?title=Informix_Dynamic_Server
http://en.wikipedia.org/w/index.php?title=Informix_Dynamic_Server
http://en.wikipedia.org/w/index.php?title=Informix_Dynamic_Server
http://en.wikipedia.org/w/index.php?title=Ingres_%28database%29
http://en.wikipedia.org/w/index.php?title=InterBase
http://en.wikipedia.org/w/index.php?title=Linter_SQL_RDBMS
http://en.wikipedia.org/w/index.php?title=Linter_SQL_RDBMS
http://en.wikipedia.org/w/index.php?title=Microsoft_Access
http://en.wikipedia.org/w/index.php?title=Microsoft_Access
http://en.wikipedia.org/w/index.php?title=Microsoft_Visual_Foxpro
http://en.wikipedia.org/w/index.php?title=Microsoft_Visual_Foxpro
http://en.wikipedia.org/w/index.php?title=Microsoft_Visual_Foxpro
http://en.wikipedia.org/w/index.php?title=Microsoft_SQL_Server
http://en.wikipedia.org/w/index.php?title=Microsoft_SQL_Server
http://en.wikipedia.org/w/index.php?title=SQL_Server_Compact
http://en.wikipedia.org/w/index.php?title=SQL_Server_Compact
http://en.wikipedia.org/w/index.php?title=SQL_Server_Compact
http://en.wikipedia.org/w/index.php?title=SQL_Server_Compact
http://en.wikipedia.org/w/index.php?title=SQL_Server_Compact
http://en.wikipedia.org/w/index.php?title=MySQL
http://en.wikipedia.org/w/index.php?title=Virtuoso_Universal_Server
http://en.wikipedia.org/w/index.php?title=Virtuoso_Universal_Server
http://en.wikipedia.org/w/index.php?title=Oracle_Database
http://en.wikipedia.org/w/index.php?title=Pervasive_PSQL
http://en.wikipedia.org/w/index.php?title=Pervasive_PSQL

Comparison of relational database management systems 197

Polyhedra Limited
by

available
RAM,
address
space

232 rows Unlimited 65,536 4 GB (subject to
RAM)

4 GB
(subject to

RAM)

32 bits 0001-01-01 8000-12-31 255

PostgreSQL Unlimited 32 TB 1.6 TB 250–1600 depending
on type

1 GB (text,
bytea)[6] - stored

inline or 4 TB
(stored in

pg_largeobject)[7]

1 GB Unlimited −4,713 5,874,897 63

RDM
Embedded

Unlimited 248-1 rows 32 KB 1,000 4 GB char: 256,
varchar: 4

KB

64 bits 0001-01-01 11758978-12-31 31

RDM Server Unlimited 264-1 rows 32 KB 32,768 Unlimited 32 KB 64 bits 0001-01-01 11758978-12-31 32

ScimoreDB Unlimited 16 EB 8,050 B 255 16 TB 8,000 B 64 bits ? ? ?

SQL
Anywhere

104 TB
(13 files,
each file

up to 8 TB
(32 KB
pages))

Limited
by file size

Limited by
file size

45,000 2 GB 2 GB 64 bits 0001-01-01 9999-12-31 ?

SQLite 128 TB
(231 pages
* 64 KB
max page

size)

Limited
by file size

Limited by
file size

32,767 2 GB 2 GB 64 bits No DATE
type9

No DATE type9 Unlimited

Teradata Unlimited Unlimited 64 KB
wo/lobs (64
GB w/lobs)

2,048 2 GB 10,000 64 bits ? 9999-12-31
Select

80991231
(date);

30

UniVerse Unlimited Unlimited Unlimited Unlimited Unlimited Unlimited Unlimited Unlimited Unlimited Unlimited

Xeround
Cloud
Database

Unlimited Unlimited 32 GB,
depending

on available
memory

1,000 4 GB 64 KB 64 bits 1000 9999 64

Max DB
size

Max table
size

Max row
size

Max columns per
row

Max Blob/Clob
size

Max
CHAR size

Max
NUMBER

size

Min DATE
value

Max DATE
value

Max
column

name size

Note (1): Firebird 2.x maximum database size is effectively unlimited with the largest known database size >980
GB. Firebird 1.5.x maximum database size: 32 TB.
Note (2): Limit is 1038 using DECIMAL datatype.
Note (3): InnoDB is limited to 8,000 bytes (excluding VARBINARY, VARCHAR, BLOB, or TEXT columns).
Note (4): InnoDB is limited to 1,000 columns.
Note (6): Using VARCHAR (MAX) in SQL 2005 and later.
Note (7): When using a page size of 32 KB, and when BLOB/CLOB data is stored in the database file.
Note (8): Java array size limit of 2,147,483,648 (231) objects per array applies. This limit applies to number of
characters in names, rows per table, columns per table, and characters per CHAR/VARCHAR.

http://en.wikipedia.org/w/index.php?title=Polyhedra_DBMS
http://en.wikipedia.org/w/index.php?title=PostgreSQL
http://en.wikipedia.org/w/index.php?title=RDM_Embedded
http://en.wikipedia.org/w/index.php?title=RDM_Embedded
http://en.wikipedia.org/w/index.php?title=RDM_Server
http://en.wikipedia.org/w/index.php?title=ScimoreDB
http://en.wikipedia.org/w/index.php?title=SQL_Anywhere
http://en.wikipedia.org/w/index.php?title=SQL_Anywhere
http://en.wikipedia.org/w/index.php?title=SQLite
http://en.wikipedia.org/w/index.php?title=Teradata
http://en.wikipedia.org/w/index.php?title=UniVerse
http://en.wikipedia.org/w/index.php?title=Xeround
http://en.wikipedia.org/w/index.php?title=Xeround
http://en.wikipedia.org/w/index.php?title=Xeround

Comparison of relational database management systems 198

Note (9): Despite the lack of a date datatype, SQLite does include date and time functions, which work for
timestamps between 0000-01-01 00:00:00 and 5352-11-01 10:52:47.
Note (10): Informix DATETIME type has adjustable range from YEAR only through 1/10000th second.
DATETIME date range is 0001-01-01 00:00:00.00000 through 9999-12-31 23:59:59.99999.
Note (11): Since version 12c. Earlier versions support up to 4000 B.

Tables and views
Information about what tables and views (other than basic ones) are supported natively.

Temporary table Materialized view

4th Dimension Yes Planned for inclusion in next major release

ADABAS ? ?

Adaptive Server Enterprise Yes1 Yes - see precomputed result sets

Advantage Database Server Yes No (only common views)

Altibase Yes No (only common views)

Apache Derby Yes No

Clustrix Yes No

CUBRID No No

Drizzle Yes No4

DB2 Yes Yes

Empress Embedded Database Yes Yes

EXASolution Yes No

Firebird Yes No (only common views)

HSQLDB Yes No

H2 Yes No

Informix Dynamic Server Yes No2

Ingres Yes Planned for inclusion in next major release

InterBase Yes No

Linter SQL RDBMS Yes Yes

LucidDB No No

MaxDB Yes No

Microsoft Access (JET) No No

Microsoft Visual Foxpro Yes Yes

Microsoft SQL Server Yes Yes3

Microsoft SQL Server Compact (Embedded Database) Yes No

MonetDB/SQL Yes No

MySQL Yes No4

OpenBase SQL Yes Yes

Oracle Yes Yes

http://en.wikipedia.org/w/index.php?title=View_%28database%29
http://en.wikipedia.org/w/index.php?title=Materialized_view
http://en.wikipedia.org/w/index.php?title=4th_Dimension_%28Software%29
http://en.wikipedia.org/w/index.php?title=ADABAS
http://en.wikipedia.org/w/index.php?title=Adaptive_Server_Enterprise
http://en.wikipedia.org/w/index.php?title=Advantage_Database_Server
http://en.wikipedia.org/w/index.php?title=Altibase
http://en.wikipedia.org/w/index.php?title=Apache_Derby
http://en.wikipedia.org/w/index.php?title=Clustrix
http://en.wikipedia.org/w/index.php?title=CUBRID
http://en.wikipedia.org/w/index.php?title=Drizzle_%28database_server%29
http://en.wikipedia.org/w/index.php?title=IBM_DB2
http://en.wikipedia.org/w/index.php?title=Empress_database
http://en.wikipedia.org/w/index.php?title=EXASOL
http://en.wikipedia.org/w/index.php?title=Firebird_%28database_server%29
http://en.wikipedia.org/w/index.php?title=HSQLDB
http://en.wikipedia.org/w/index.php?title=H2_%28DBMS%29
http://en.wikipedia.org/w/index.php?title=Informix_Dynamic_Server
http://en.wikipedia.org/w/index.php?title=Ingres_%28database%29
http://en.wikipedia.org/w/index.php?title=InterBase
http://en.wikipedia.org/w/index.php?title=Linter_SQL_RDBMS
http://en.wikipedia.org/w/index.php?title=LucidDB
http://en.wikipedia.org/w/index.php?title=MaxDB
http://en.wikipedia.org/w/index.php?title=Microsoft_Access
http://en.wikipedia.org/w/index.php?title=Microsoft_Visual_Foxpro
http://en.wikipedia.org/w/index.php?title=Microsoft_SQL_Server
http://en.wikipedia.org/w/index.php?title=SQL_Server_Compact
http://en.wikipedia.org/w/index.php?title=MonetDB
http://en.wikipedia.org/w/index.php?title=MySQL
http://en.wikipedia.org/w/index.php?title=OpenBase
http://en.wikipedia.org/w/index.php?title=Oracle_Database

Comparison of relational database management systems 199

Oracle Rdb Yes Yes

OpenLink Virtuoso Yes Yes

Pervasive PSQL Yes No

Polyhedra DBMS No No (only common views)

PostgreSQL Yes Yes5

RDM Embedded Yes No

RDM Server Yes No

SQL Anywhere Yes Yes

ScimoreDB No No

SQLite Yes No

Teradata Yes Yes

UniData Yes No

UniVerse Yes No

Xeround Cloud Database Yes No

Note (1): Server provides tempdb, which can be used for public and private (for the session) temp tables.
Note (2): Materialized views are not supported in Informix; the term is used in IBM’s documentation to refer to a
temporary table created to run the view’s query when it is too complex, but one cannot for example define the way it
is refreshed or build an index on it. The term is defined in the Informix Performance Guide.
Note (3): Query optimizer support only in Developer and Enterprise Editions. In other versions, a direct reference to
materialized view and a query hint are required.
Note (4): Materialized views can be emulated using stored procedures and triggers.
Note (5): Materialized views are now standard but can be emulated in versions prior to 9.3 with stored procedures
and triggers using PL/pgSQL, PL/Perl, PL/Python, or other procedural languages.

Indexes
Information about what indexes (other than basic B-/B+ tree indexes) are supported natively.

R-/R+
tree

Hash Expression Partial Reverse Bitmap GiST GIN Full-text Spatial FOT

4th Dimension ? Cluster ? ? ? ? ? ? Yes ? ?

ADABAS ? ? ? ? ? ? ? ? ? ? ?

Adaptive Server
Enterprise

No No Yes No Yes No No No Yes
? ?

Advantage
Database Server

No No Yes No Yes Yes No No Yes
? ?

Apache Derby No No No No No No No No No ? ?

Clustrix No Yes No No No No No No No No ?

CUBRID No No Yes Yes Yes No No No ? ? ?

Drizzle No No No No No No No No No ? ?

DB2 No ? Yes No Yes Yes No No Yes ? ?

http://en.wikipedia.org/w/index.php?title=Oracle_Rdb
http://en.wikipedia.org/w/index.php?title=Virtuoso_Universal_Server
http://en.wikipedia.org/w/index.php?title=Pervasive_PSQL
http://en.wikipedia.org/w/index.php?title=Polyhedra_DBMS
http://en.wikipedia.org/w/index.php?title=PostgreSQL
http://en.wikipedia.org/w/index.php?title=RDM_Embedded
http://en.wikipedia.org/w/index.php?title=RDM_Server
http://en.wikipedia.org/w/index.php?title=SQL_Anywhere
http://en.wikipedia.org/w/index.php?title=ScimoreDB
http://en.wikipedia.org/w/index.php?title=SQLite
http://en.wikipedia.org/w/index.php?title=Teradata
http://en.wikipedia.org/w/index.php?title=UniData
http://en.wikipedia.org/w/index.php?title=UniVerse
http://en.wikipedia.org/w/index.php?title=Xeround
http://en.wikipedia.org/w/index.php?title=Query_optimizer
http://en.wikipedia.org/w/index.php?title=PL/pgSQL
http://en.wikipedia.org/w/index.php?title=PL/Perl
http://en.wikipedia.org/w/index.php?title=Index_%28database%29
http://en.wikipedia.org/w/index.php?title=B-tree
http://en.wikipedia.org/w/index.php?title=B%2B_tree
http://en.wikipedia.org/w/index.php?title=R-tree
http://en.wikipedia.org/w/index.php?title=R%2B_tree
http://en.wikipedia.org/w/index.php?title=R%2B_tree
http://en.wikipedia.org/w/index.php?title=Hash_function
http://en.wikipedia.org/w/index.php?title=Expression_index
http://en.wikipedia.org/w/index.php?title=Partial_index
http://en.wikipedia.org/w/index.php?title=Reverse_index
http://en.wikipedia.org/w/index.php?title=Bitmap_index
http://en.wikipedia.org/w/index.php?title=GiST
http://en.wikipedia.org/w/index.php?title=Inverted_index
http://en.wikipedia.org/w/index.php?title=Full_text_search
http://en.wikipedia.org/w/index.php?title=Spatial_index
http://en.wikipedia.org/w/index.php?title=Forest_of_Trees
http://en.wikipedia.org/w/index.php?title=4th_Dimension_%28Software%29
http://en.wikipedia.org/w/index.php?title=ADABAS
http://en.wikipedia.org/w/index.php?title=Adaptive_Server_Enterprise
http://en.wikipedia.org/w/index.php?title=Adaptive_Server_Enterprise
http://en.wikipedia.org/w/index.php?title=Advantage_Database_Server
http://en.wikipedia.org/w/index.php?title=Advantage_Database_Server
http://en.wikipedia.org/w/index.php?title=Apache_Derby
http://en.wikipedia.org/w/index.php?title=Clustrix
http://en.wikipedia.org/w/index.php?title=CUBRID
http://en.wikipedia.org/w/index.php?title=Drizzle_%28database_server%29
http://en.wikipedia.org/w/index.php?title=IBM_DB2

Comparison of relational database management systems 200

Empress
Embedded
Database

Yes No No Yes No Yes No No No
? ?

EXASolution No Yes No No No No No No No ? ?

Firebird No No Yes No Yes 1 No No No No ? ?

HSQLDB No No No No No No No No No ? ?

H2 No Yes No No No No No No Yes ? ?

Informix Dynamic
Server

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Ingres
Yes Yes Ingres v10 No No

Ingres
v10

No No No
? ?

InterBase No No No No No No No No No ? ?

Linter SQL
RDBMS10

No No No No No No No No Yes No No

LucidDB No No No No No Yes No No No ? ?

MaxDB No No No No No No No No No ? ?

Microsoft Access
(JET)

No No No No No No No No No
? ?

Microsoft Visual
Foxpro

No No Yes Yes Yes2 Yes No No No
? ?

Microsoft SQL
Server

? Non/Cluster &
fill factor Yes3 Yes4 No3 No No No Yes Yes

?

Microsoft SQL
Server Compact
(Embedded
Database)

No No No No No No No No No

? ?

MonetDB/SQL No Yes No No No No No No ? ? ?

MySQL MyISAM
tables only

MEMORY,
Cluster (NDB),
InnoDB,5 tables

only

No No No No No No

MyISAM
tables and,

since v5.6.4,
InnoDB
tables

MyISAM
tables only

?

Oracle Yes 11 Cluster Tables Yes Yes 6 Yes Yes No No Yes Yes ?

Oracle Rdb No Yes ? No No ? No No ? ? ?

OpenLink
Virtuoso Yes

Cluster
Yes Yes No Yes No No Yes

Yes
(Commercial

only)
No

Pervasive PSQL No No No No No No No No No No No

Polyhedra DBMS No Yes No No No No No No No No ?

PostgreSQL Yes Yes Yes Yes Yes7 Yes8 Yes Yes Yes PostGIS ?

RDM Embedded No Yes No Yes Yes No No No No No No

RDM Server No No No Yes Yes No No No No No No

ScimoreDB No No No No No No No No Yes ? ?

SQL Anywhere No No No No No No No No Yes ? ?

http://en.wikipedia.org/w/index.php?title=Empress_database
http://en.wikipedia.org/w/index.php?title=Empress_database
http://en.wikipedia.org/w/index.php?title=Empress_database
http://en.wikipedia.org/w/index.php?title=EXASOL
http://en.wikipedia.org/w/index.php?title=Firebird_%28database_server%29
http://en.wikipedia.org/w/index.php?title=HSQLDB
http://en.wikipedia.org/w/index.php?title=H2_%28DBMS%29
http://en.wikipedia.org/w/index.php?title=Informix_Dynamic_Server
http://en.wikipedia.org/w/index.php?title=Informix_Dynamic_Server
http://en.wikipedia.org/w/index.php?title=Ingres_%28database%29
http://en.wikipedia.org/w/index.php?title=InterBase
http://en.wikipedia.org/w/index.php?title=Linter_SQL_RDBMS
http://en.wikipedia.org/w/index.php?title=Linter_SQL_RDBMS
http://en.wikipedia.org/w/index.php?title=LucidDB
http://en.wikipedia.org/w/index.php?title=MaxDB
http://en.wikipedia.org/w/index.php?title=Microsoft_Access
http://en.wikipedia.org/w/index.php?title=Microsoft_Visual_Foxpro
http://en.wikipedia.org/w/index.php?title=Microsoft_Visual_Foxpro
http://en.wikipedia.org/w/index.php?title=Microsoft_SQL_Server
http://en.wikipedia.org/w/index.php?title=Microsoft_SQL_Server
http://en.wikipedia.org/w/index.php?title=SQL_Server_Compact
http://en.wikipedia.org/w/index.php?title=SQL_Server_Compact
http://en.wikipedia.org/w/index.php?title=SQL_Server_Compact
http://en.wikipedia.org/w/index.php?title=SQL_Server_Compact
http://en.wikipedia.org/w/index.php?title=MonetDB
http://en.wikipedia.org/w/index.php?title=MySQL
http://en.wikipedia.org/w/index.php?title=Oracle_Database
http://en.wikipedia.org/w/index.php?title=Oracle_Rdb
http://en.wikipedia.org/w/index.php?title=Virtuoso_Universal_Server
http://en.wikipedia.org/w/index.php?title=Virtuoso_Universal_Server
http://en.wikipedia.org/w/index.php?title=Pervasive_PSQL
http://en.wikipedia.org/w/index.php?title=Polyhedra_DBMS
http://en.wikipedia.org/w/index.php?title=PostgreSQL
http://en.wikipedia.org/w/index.php?title=RDM_Embedded
http://en.wikipedia.org/w/index.php?title=RDM_Server
http://en.wikipedia.org/w/index.php?title=ScimoreDB
http://en.wikipedia.org/w/index.php?title=SQL_Anywhere

Comparison of relational database management systems 201

SQLite Yes[8] No No Yes[9] Yes No No No Yes[10] SpatiaLite ?

Teradata No Yes Yes Yes No Yes No No ? ? ?

UniVerse Yes Yes Yes3 Yes3 Yes3 No No No ? Yes[11] ?

Xeround Cloud
Database

No Yes No No No No No No No No
?

R-/R+
tree

Hash Expression Partial Reverse Bitmap GiST GIN Full-text Spatial FOT

Note (1): The users need to use a function from freeAdhocUDF library or similar.
Note (2): Can be implemented for most data types using expression-based indexes.
Note (3): Can be emulated by indexing a computed column (doesn't easily update) or by using an "Indexed View"
(proper name not just any view works).
Note (4): Can be implemented by using an indexed view.
Note (5): InnoDB automatically generates adaptive hash index entries as needed.
Note (6): Can be implemented using Function-based Indexes in Oracle 8i and higher, but the function needs to be
used in the sql for the index to be used.
Note (7): A PostgreSQL functional index can be used to reverse the order of a field.
Note (8): PostgreSQL will likely support on-disk bitmap indexes in a future version. Version 8.2 supports a related
technique known as "in-memory bitmap scans".
Note (10): B+ tree and full-text only for now.
Note (11): R-Tree indexing available in base edition with Locator but some functionality requires Personal Edition
or Enterprise Edition with Spatial option.

Database capabilities

Union Intersect Except Inner
joins

Outer
joins

Inner
selects

Merge
joins

Blobs
and

Clobs

Common Table
Expressions

Windowing
Functions

Parallel
Query

4th Dimension Yes Yes Yes Yes Yes No No Yes ? ? ?

ADABAS Yes ? ? ? ? ? ? ? ? ? ?

Adaptive Server
Enterprise

Yes
? ?

Yes Yes Yes Yes Yes
? ?

Yes

Advantage
Database Server

Yes No No Yes Yes Yes Yes Yes
?

No
?

Altibase
Yes Yes

Yes, via
MINUS

Yes Yes Yes Yes Yes No No No

Apache Derby Yes Yes Yes Yes Yes ? ? Yes No No ?

Clustrix Yes No No Yes Yes Yes No Yes Yes Yes Yes

CUBRID Yes Yes Yes Yes Yes Yes Yes Yes No Yes ?

Drizzle Yes No No Yes Yes Yes No Yes No No No[12]

DB2 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

http://en.wikipedia.org/w/index.php?title=SQLite
http://en.wikipedia.org/w/index.php?title=Teradata
http://en.wikipedia.org/w/index.php?title=UniVerse
http://en.wikipedia.org/w/index.php?title=Xeround
http://en.wikipedia.org/w/index.php?title=Xeround
http://en.wikipedia.org/w/index.php?title=R-tree
http://en.wikipedia.org/w/index.php?title=R%2B_tree
http://en.wikipedia.org/w/index.php?title=R%2B_tree
http://en.wikipedia.org/w/index.php?title=Hash_function
http://en.wikipedia.org/w/index.php?title=Expression_%28programming%29
http://en.wikipedia.org/w/index.php?title=Partial_index
http://en.wikipedia.org/w/index.php?title=Reverse_index
http://en.wikipedia.org/w/index.php?title=Bitmap_Index
http://en.wikipedia.org/w/index.php?title=GiST
http://en.wikipedia.org/w/index.php?title=Generalized_Inverted_Index
http://en.wikipedia.org/w/index.php?title=Full_text_search
http://en.wikipedia.org/w/index.php?title=Spatial_index
http://en.wikipedia.org/w/index.php?title=Forest_of_Trees
http://en.wikipedia.org/w/index.php?title=Union_%28SQL%29
http://en.wikipedia.org/w/index.php?title=Intersect_%28sql%29
http://en.wikipedia.org/w/index.php?title=Except_%28SQL%29
http://en.wikipedia.org/w/index.php?title=Inner_join
http://en.wikipedia.org/w/index.php?title=Inner_join
http://en.wikipedia.org/w/index.php?title=Outer_join
http://en.wikipedia.org/w/index.php?title=Outer_join
http://en.wikipedia.org/w/index.php?title=Join_%28SQL%29%23Merge_join
http://en.wikipedia.org/w/index.php?title=Join_%28SQL%29%23Merge_join
http://en.wikipedia.org/w/index.php?title=Binary_large_object
http://en.wikipedia.org/w/index.php?title=Character_large_object
http://en.wikipedia.org/w/index.php?title=Common_table_expressions
http://en.wikipedia.org/w/index.php?title=Common_table_expressions
http://en.wikipedia.org/w/index.php?title=Window_function_%28SQL%29
http://en.wikipedia.org/w/index.php?title=Window_function_%28SQL%29
http://en.wikipedia.org/w/index.php?title=Parallel_Query
http://en.wikipedia.org/w/index.php?title=Parallel_Query
http://en.wikipedia.org/w/index.php?title=4th_Dimension_%28Software%29
http://en.wikipedia.org/w/index.php?title=ADABAS
http://en.wikipedia.org/w/index.php?title=Adaptive_Server_Enterprise
http://en.wikipedia.org/w/index.php?title=Adaptive_Server_Enterprise
http://en.wikipedia.org/w/index.php?title=Advantage_Database_Server
http://en.wikipedia.org/w/index.php?title=Advantage_Database_Server
http://en.wikipedia.org/w/index.php?title=Altibase
http://en.wikipedia.org/w/index.php?title=Apache_Derby
http://en.wikipedia.org/w/index.php?title=Clustrix
http://en.wikipedia.org/w/index.php?title=CUBRID
http://en.wikipedia.org/w/index.php?title=Drizzle_%28database_server%29
http://en.wikipedia.org/w/index.php?title=IBM_DB2

Comparison of relational database management systems 202

Empress
Embedded
Database

Yes Yes Yes Yes Yes Yes Yes Yes
? ? ?

EXASolution Yes Yes Yes Yes Yes Yes Yes No Yes Yes Yes

Firebird Yes ? ? Yes Yes Yes Yes Yes Yes Yes ?

HSQLDB Yes Yes Yes Yes Yes Yes Yes[13] Yes Yes No Yes

H2 Yes Yes Yes Yes Yes Yes No Yes experimental[14] No[15] ?

Informix Dynamic
Server

Yes Yes
Yes, via
MINUS

Yes Yes Yes Yes Yes Yes Yes Yes[16]

Ingres Yes No No Yes Yes Yes Yes Yes No No ?

InterBase Yes ? ? Yes Yes ? ? Yes ? ? ?

Linter SQL
RDBMS

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No

LucidDB Yes Yes Yes Yes Yes Yes Yes No ? ? ?

MaxDB Yes ? ? Yes Yes Yes No Yes ? ? ?

Microsoft Access
(JET)

Yes No No Yes Yes Yes No Yes No No
?

Microsoft Visual
Foxpro

Yes
? ?

Yes Yes Yes
?

Yes
? ? ?

Microsoft SQL
Server

Yes
Yes (2005

and
beyond)

Yes
(2005
and

beyond)

Yes Yes Yes Yes Yes Yes Yes Yes

Microsoft SQL
Server Compact
(Embedded
Database)

Yes No No Yes Yes

?

No Yes No No

?

MonetDB/SQL ? ? ? ? ? ? ? ? ? ? ?

MySQL Yes No No Yes Yes Yes No Yes No No No

OpenBase SQL No No No Yes Yes Yes Yes Yes ? ? ?

OpenLink Virtuoso Yes ? ? Yes Yes Yes ? Yes ? ? ?

Oracle
Yes Yes

Yes, via
MINUS

Yes Yes Yes Yes Yes Yes 1 Yes Yes

Oracle Rdb Yes Yes Yes Yes Yes Yes Yes Yes ? ? ?

Pervasive PSQL Yes No No Yes Yes ? ? Yes No No No

Polyhedra DBMS Yes Yes Yes Yes No ? ? Yes ? ? ?

PostgreSQL Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No

RDM Embedded No No No Yes Yes No No Yes No No No

RDM Server Yes No No Yes Yes Yes No Yes No No No

ScimoreDB
Yes

? ?
Yes

LEFT
only

Yes Yes Yes
? ? ?

SmallSQL ? ? ? ? ? ? ? ? ? ? ?

SQL Anywhere Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

http://en.wikipedia.org/w/index.php?title=Empress_database
http://en.wikipedia.org/w/index.php?title=Empress_database
http://en.wikipedia.org/w/index.php?title=Empress_database
http://en.wikipedia.org/w/index.php?title=EXASOL
http://en.wikipedia.org/w/index.php?title=Firebird_%28database_server%29
http://en.wikipedia.org/w/index.php?title=HSQLDB
http://en.wikipedia.org/w/index.php?title=H2_%28DBMS%29
http://en.wikipedia.org/w/index.php?title=Informix_Dynamic_Server
http://en.wikipedia.org/w/index.php?title=Informix_Dynamic_Server
http://en.wikipedia.org/w/index.php?title=Ingres_%28database%29
http://en.wikipedia.org/w/index.php?title=InterBase
http://en.wikipedia.org/w/index.php?title=Linter_SQL_RDBMS
http://en.wikipedia.org/w/index.php?title=Linter_SQL_RDBMS
http://en.wikipedia.org/w/index.php?title=LucidDB
http://en.wikipedia.org/w/index.php?title=MaxDB
http://en.wikipedia.org/w/index.php?title=Microsoft_Access
http://en.wikipedia.org/w/index.php?title=Microsoft_Visual_Foxpro
http://en.wikipedia.org/w/index.php?title=Microsoft_Visual_Foxpro
http://en.wikipedia.org/w/index.php?title=Microsoft_SQL_Server
http://en.wikipedia.org/w/index.php?title=Microsoft_SQL_Server
http://en.wikipedia.org/w/index.php?title=SQL_Server_Compact
http://en.wikipedia.org/w/index.php?title=SQL_Server_Compact
http://en.wikipedia.org/w/index.php?title=SQL_Server_Compact
http://en.wikipedia.org/w/index.php?title=SQL_Server_Compact
http://en.wikipedia.org/w/index.php?title=MonetDB
http://en.wikipedia.org/w/index.php?title=MySQL
http://en.wikipedia.org/w/index.php?title=OpenBase
http://en.wikipedia.org/w/index.php?title=Virtuoso_Universal_Server
http://en.wikipedia.org/w/index.php?title=Oracle_Database
http://en.wikipedia.org/w/index.php?title=Oracle_Rdb
http://en.wikipedia.org/w/index.php?title=Pervasive_PSQL
http://en.wikipedia.org/w/index.php?title=Polyhedra_DBMS
http://en.wikipedia.org/w/index.php?title=PostgreSQL
http://en.wikipedia.org/w/index.php?title=RDM_Embedded
http://en.wikipedia.org/w/index.php?title=RDM_Server
http://en.wikipedia.org/w/index.php?title=ScimoreDB
http://en.wikipedia.org/w/index.php?title=SmallSQL
http://en.wikipedia.org/w/index.php?title=SQL_Anywhere

Comparison of relational database management systems 203

SQLite
Yes Yes Yes Yes

LEFT
only

Yes No Yes No No No

Teradata Yes Yes Yes Yes Yes Yes Yes Yes No Yes Yes

UniVerse Yes Yes Yes Yes Yes Yes Yes No No No ?

Xeround Cloud
Database

Yes No No Yes Yes Yes No Yes No No No

Union Intersect Except Inner
joins

Outer
joins

Inner
selects

Merge
joins

Blobs
and

Clobs

Common Table
Expressions

Windowing
Functions

Parallel
Query

Note (1): Recursive CTEs introduced in 11gR2 supersedes similar construct called CONNECT BY.

Data types

Type

system

Integer Floating point Decimal String Binary Date/Time Boolean Other

4th

Dimension

Static UUID (16-bit),

SMALLINT

(16-bit), INT

(32-bit), BIGINT

(64-bit),

NUMERIC

(64-bit)

REAL, FLOAT REAL, FLOAT CLOB, TEXT,

VARCHAR

BIT, BIT VARYING,

BLOB

DURATION,

INTERVAL,

TIMESTAMP

BOOLEAN PICTURE

Altibase Static SMALLINT

(16-bit),

INTEGER

(32-bit), BIGINT

(64-bit)

REAL(32-bit),

DOUBLE(64-bit)

DECIMAL, NUMERIC, NUMBER,

FLOAT

CHAR, VARCHAR,

NCHAR, NVARCHAR,

CLOB

BLOB, BYTE,

NIBBLE, BIT,

VARBIT

DATE GEOMETRY

Clustrix Static TINYINT (8-bit),

SMALLINT

(16-bit),

MEDIUMINT

(24-bit), INT

(32-bit), BIGINT

(64-bit)

FLOAT (32-bit),

DOUBLE

DECIMAL CHAR, BINARY,

VARCHAR,

VARBINARY, TEXT,

TINYTEXT,

MEDIUMTEXT,

LONGTEXT

TINYBLOB, BLOB,

MEDIUMBLOB,

LONGBLOB

DATETIME, DATE,

TIMESTAMP,

YEAR

BIT(1),

BOOLEAN

ENUM, SET,

CUBRID Static SMALLINT

(16-bit),

INTEGER

(32-bit), BIGINT

(64-bit)

FLOAT,

REAL(32-bit),

DOUBLE(64-bit)

DECIMAL, NUMERIC CHAR, VARCHAR,

NCHAR, NVARCHAR,

CLOB

BLOB DATE, DATETIME,

TIME, TIMESTAMP

BIT MONETARY, BIT

VARYING, SET,

MULTISET,

SEQUENCE, ENUM

Drizzle Static INT (32-bit),

BIGINT (64-bit)

DOUBLE (aka

REAL) (64-bit)

DECIMAL BINARY, VARCHAR,

VARBINARY, TEXT,

BLOB DATETIME, DATE,

TIMESTAMP

ENUM, SERIAL

http://en.wikipedia.org/w/index.php?title=SQLite
http://en.wikipedia.org/w/index.php?title=Teradata
http://en.wikipedia.org/w/index.php?title=UniVerse
http://en.wikipedia.org/w/index.php?title=Xeround
http://en.wikipedia.org/w/index.php?title=Xeround
http://en.wikipedia.org/w/index.php?title=Union_%28SQL%29
http://en.wikipedia.org/w/index.php?title=Intersect_%28sql%29
http://en.wikipedia.org/w/index.php?title=Except_%28SQL%29
http://en.wikipedia.org/w/index.php?title=Inner_join
http://en.wikipedia.org/w/index.php?title=Inner_join
http://en.wikipedia.org/w/index.php?title=Outer_join
http://en.wikipedia.org/w/index.php?title=Outer_join
http://en.wikipedia.org/w/index.php?title=Join_%28SQL%29%23Merge_join
http://en.wikipedia.org/w/index.php?title=Join_%28SQL%29%23Merge_join
http://en.wikipedia.org/w/index.php?title=Binary_large_object
http://en.wikipedia.org/w/index.php?title=Character_large_object
http://en.wikipedia.org/w/index.php?title=Common_table_expressions
http://en.wikipedia.org/w/index.php?title=Common_table_expressions
http://en.wikipedia.org/w/index.php?title=Window_function_%28SQL%29
http://en.wikipedia.org/w/index.php?title=Window_function_%28SQL%29
http://en.wikipedia.org/w/index.php?title=Parallel_Query
http://en.wikipedia.org/w/index.php?title=Parallel_Query
http://en.wikipedia.org/w/index.php?title=Type_system
http://en.wikipedia.org/w/index.php?title=Type_system
http://en.wikipedia.org/w/index.php?title=Integer_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Floating_point
http://en.wikipedia.org/w/index.php?title=String_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Binary_large_object
http://en.wikipedia.org/w/index.php?title=Boolean_data_type
http://en.wikipedia.org/w/index.php?title=4th_Dimension_%28Software%29
http://en.wikipedia.org/w/index.php?title=4th_Dimension_%28Software%29
http://en.wikipedia.org/w/index.php?title=Altibase
http://en.wikipedia.org/w/index.php?title=Clustrix
http://en.wikipedia.org/w/index.php?title=CUBRID
http://en.wikipedia.org/w/index.php?title=Drizzle_%28database_server%29

Comparison of relational database management systems 204

Empress

Embedded

Database

Static TINYINT,

SQL_TINYINT,

or INTEGER8;

SMALLINT,

SQL_SMALLINT,

or INTEGER16;

INTEGER, INT,

SQL_INTEGER,

or INTEGER32;

BIGINT,

SQL_BIGINT, or

INTEGER64

REAL, SQL_REAL,

or FLOAT32;

DOUBLE

PRECISION,

SQL_DOUBLE, or

FLOAT64; FLOAT,

or SQL_FLOAT;

EFLOAT

DECIMAL, DEC, NUMERIC,

SQL_DECIMAL, or

SQL_NUMERIC; DOLLAR

CHARACTER,

ECHARACTER,

CHARACTER

VARYING, NATIONAL

CHARACTER,

NATIONAL

CHARACTER

VARYING,

NLSCHARACTER,

CHARACTER LARGE

OBJECT, TEXT,

NATIONAL

CHARACTER LARGE

OBJECT, NLSTEXT

BINARY LARGE

OBJECT or BLOB;

BULK

DATE, EDATE,

TIME, ETIME,

EPOCH_TIME,

TIMESTAMP,

MICROTIMESTAMP

BOOLEAN SEQUENCE 32,

SEQUENCE

EXASolution Static TINYINT,

SMALLINT,

INTEGER,

BIGINT,

REAL, FLOAT,

DOUBLE

DECIMAL, DEC, NUMERIC,

NUMBER

CHAR, NCHAR,

VARCHAR,

VARCHAR2,

NVARCHAR,

NVARCHAR2, CLOB,

NCLOB

N/A DATE,

TIMESTAMP,

INTERVAL

BOOLEAN,

BOOL

GEOMETRY

HSQLDB Static TINYINT (8-bit),

SMALLINT

(16-bit),

INTEGER

(32-bit), BIGINT

(64-bit)

DOUBLE (64-bit) DECIMAL, NUMERIC CHAR, VARCHAR,

LONGVARCHAR,

CLOB

BINARY,

VARBINARY,

LONGVARBINARY,

BLOB

DATE, TIME,

TIMESTAMP,

INTERVAL

BOOLEAN OTHER (object), BIT,

BIT VARYING,

ARRAY

Informix

Dynamic

Server

Static SMALLINT

(16-bit), INT

(32-bit), INT8

(64-bit

proprietary),

BIGINT (64-bit)

SMALLFLOAT

(32-bit), FLOAT

(64-bit)

DECIMAL (32 digits float/fixed),

MONEY

CHAR, VARCHAR,

NCHAR, NVARCHAR,

LVARCHAR, CLOB,

TEXT

TEXT, BYTE,

BLOB, CLOB

DATE, DATETIME,

INTERVAL

BOOLEAN SET, LIST,

MULTISET, ROW,

TIMESERIES,

SPATIAL, USER

DEFINED TYPES

Ingres Static TINYINT (8-bit),

SMALLINT

(16-bit),

INTEGER

(32-bit), BIGINT

(64-bit)

FLOAT4 (32-bit),

FLOAT (64-bit)

DECIMAL C, CHAR, VARCHAR,

LONG VARCHAR,

NCHAR, NVARCHAR,

LONG NVARCHAR,

TEXT

BYTE, VARBYTE,

LONG VARBYTE

(BLOB)

DATE, ANSIDATE,

INGRESDATE,

TIME, TIMESTAMP,

INTERVAL

N/A MONEY,

OBJECT_KEY,

TABLE_KEY,

USER-DEFINED

DATA TYPES (via

OME)

Linter SQL

RDBMS

Static SMALLINT

(16-bit),

INTEGER

(32-bit), BIGINT

(64-bit)

REAL(32-bit),

DOUBLE(64-bit)

DECIMAL, NUMERIC CHAR, VARCHAR,

NCHAR, NVARCHAR,

BLOB

BYTE, VARBYTE,

BLOB

DATE BOOLEAN GEOMETRY,

EXTFILE

Microsoft

SQL Server

Static TINYINT,

SMALLINT, INT,

BIGINT

FLOAT, REAL NUMERIC, DECIMAL,

SMALLMONEY, MONEY

CHAR, VARCHAR,

TEXT, NCHAR,

NVARCHAR, NTEXT

BINARY,

VARBINARY,

IMAGE,

FILESTREAM

DATE,

DATETIMEOFFSET,

DATETIME2,

SMALLDATETIME,

DATETIME, TIME

BIT CURSOR,

TIMESTAMP,

HIERARCHYID,

UNIQUEIDENTIFIER,

SQL_VARIANT,

XML, TABLE

Microsoft

SQL Server

Compact

(Embedded

Database)

Static TINYINT,

SMALLINT, INT,

BIGINT

FLOAT, REAL NUMERIC, DECIMAL, MONEY NCHAR, NVARCHAR,

NTEXT

BINARY,

VARBINARY,

IMAGE

DATETIME BIT TIMESTAMP,

ROWVERSION,

UNIQUEIDENTIFIER,

IDENTITY,

ROWGUIDCOL

http://en.wikipedia.org/w/index.php?title=Empress_database
http://en.wikipedia.org/w/index.php?title=Empress_database
http://en.wikipedia.org/w/index.php?title=Empress_database
http://en.wikipedia.org/w/index.php?title=EXASOL
http://en.wikipedia.org/w/index.php?title=HSQLDB
http://en.wikipedia.org/w/index.php?title=Informix_Dynamic_Server
http://en.wikipedia.org/w/index.php?title=Informix_Dynamic_Server
http://en.wikipedia.org/w/index.php?title=Informix_Dynamic_Server
http://en.wikipedia.org/w/index.php?title=Ingres_%28database%29
http://en.wikipedia.org/w/index.php?title=Linter_SQL_RDBMS
http://en.wikipedia.org/w/index.php?title=Linter_SQL_RDBMS
http://en.wikipedia.org/w/index.php?title=Microsoft_SQL_Server
http://en.wikipedia.org/w/index.php?title=Microsoft_SQL_Server
http://en.wikipedia.org/w/index.php?title=SQL_Server_Compact
http://en.wikipedia.org/w/index.php?title=SQL_Server_Compact
http://en.wikipedia.org/w/index.php?title=SQL_Server_Compact
http://en.wikipedia.org/w/index.php?title=SQL_Server_Compact
http://en.wikipedia.org/w/index.php?title=SQL_Server_Compact

Comparison of relational database management systems 205

MySQL Static TINYINT (8-bit),

SMALLINT

(16-bit),

MEDIUMINT

(24-bit), INT

(32-bit), BIGINT

(64-bit)

FLOAT (32-bit),

DOUBLE (aka

REAL) (64-bit)

DECIMAL CHAR, BINARY,

VARCHAR,

VARBINARY, TEXT,

TINYTEXT,

MEDIUMTEXT,

LONGTEXT

TINYBLOB, BLOB,

MEDIUMBLOB,

LONGBLOB

DATETIME, DATE,

TIMESTAMP,

YEAR

BIT(1),

BOOLEAN

(aka

BOOL) =

synonym

for

TINYINT

ENUM, SET, GIS data

types (Geometry,

Point, Curve,

LineString, Surface,

Polygon,

GeometryCollection,

MultiPoint,

MultiCurve,

MultiLineString,

MultiSurface,

MultiPolygon)

OpenLink

Virtuoso

Static +

Dynamic

INT, INTEGER,

SMALLINT

REAL, DOUBLE

PRECISION,

FLOAT,

FLOAT'('INTNUM')'

DECIMAL,

DECIMAL'('INTNUM')',

DECIMAL'('INTNUM','INTNUM')',

NUMERIC,

NUMERIC'('INTNUM')',

NUMERIC'('INTNUM','INTNUM')'

CHARACTER,

CHAR'('INTNUM')',

VARCHAR,

VARCHAR'('INTNUM')',

NVARCHAR,

NVARCHAR'('INTNUM')'

BLOB TIMESTAMP,

DATETIME, TIME,

DATE

n/a GEOMETRY,

REFERENCE (URI),

UDT (User Defined

Type)

Oracle Static +

Dynamic

(through

ANYDATA)

NUMBER BINARY_FLOAT,

BINARY_DOUBLE

NUMBER CHAR, VARCHAR2,

CLOB, NCLOB,

NVARCHAR2, NCHAR,

LONG (deprecated)

BLOB, RAW, LONG

RAW (deprecated),

BFILE

DATE, TIMESTAMP

(with/without

TIMEZONE),

INTERVAL

N/A SPATIAL, IMAGE,

AUDIO, VIDEO,

DICOM, XMLType

Pervasive

PSQL

Static BIGINT,

INTEGER,

SMALLINT,

TINYINT,

UBIGINT,

UINTEGER,

USMALLINT,

UTINYINT

BFLOAT4,

BFLOAT8,

DOUBLE, FLOAT

DECIMAL, NUMERIC,

NUMERICSA, NUMERICSLB,

NUMERICSLS, NUMERICSTB,

NUMERICSTS

CHAR,

LONGVARCHAR,

VARCHAR

BINARY,

LONGVARBINARY,

VARBINARY

DATE, DATETIME,

TIME

BIT CURRENCY,

IDENTITY,

SMALLIDENTITY,

TIMESTAMP,

UNIQUEIDENTIFIER

Polyhedra Static INTEGER8

(8-bit),

INTEGER(16-bit),

INTEGER

(32-bit),

INTEGER64

(64-bit)

FLOAT32 (32-bit),

FLOAT (aka REAL;

64-bit)

N/A VARCHAR, LARGE

VARCHAR (aka

CHARACTER LARGE

OBJECT)

LARGE BINARY

(aka BINARY

LARGE OBJECT)

DATETIME BOOLEAN N/A

PostgreSQL Static SMALLINT

(16-bit),

INTEGER

(32-bit), BIGINT

(64-bit)

REAL (32-bit),

DOUBLE

PRECISION (64-bit)

DECIMAL, NUMERIC CHAR, VARCHAR,

TEXT

BYTEA DATE, TIME

(with/without

TIMEZONE),

TIMESTAMP

(with/without

TIMEZONE),

INTERVAL

BOOLEAN ENUM, POINT, LINE,

LSEG, BOX, PATH,

POLYGON, CIRCLE,

CIDR, INET,

MACADDR, BIT,

UUID, XML, JSON,

arrays, composites,

ranges, custom

RDM

Embedded

Static tinyint, smallint,

integer, bigint

real, float, double N/A char, varchar, wchar,

varwchar, long varchar,

long varwchar

binary, varbinary,

long varbinary

date, time, timestamp bit N/A

RDM Server Static tinyint, smallint,

integer, bigint

real, float, double decimal, numeric char, varchar, wchar,

varwchar, long varchar,

long varwchar

binary, varbinary,

long varbinary

date, time, timestamp bit rowid

SQLite Dynamic INTEGER

(64-bit)

REAL (aka FLOAT,

DOUBLE) (64-bit)

N/A TEXT (aka CHAR,

CLOB)

BLOB N/A N/A N/A

UniData Dynamic N/A N/A N/A N/A N/A N/A N/A N/A

UniVerse Dynamic N/A N/A N/A N/A N/A N/A N/A N/A

http://en.wikipedia.org/w/index.php?title=MySQL
http://en.wikipedia.org/w/index.php?title=Virtuoso_Universal_Server
http://en.wikipedia.org/w/index.php?title=Virtuoso_Universal_Server
http://en.wikipedia.org/w/index.php?title=Oracle_Database
http://en.wikipedia.org/w/index.php?title=Pervasive_PSQL
http://en.wikipedia.org/w/index.php?title=Pervasive_PSQL
http://en.wikipedia.org/w/index.php?title=Polyhedra_DBMS
http://en.wikipedia.org/w/index.php?title=PostgreSQL
http://en.wikipedia.org/w/index.php?title=RDM_Embedded
http://en.wikipedia.org/w/index.php?title=RDM_Embedded
http://en.wikipedia.org/w/index.php?title=RDM_Server
http://en.wikipedia.org/w/index.php?title=SQLite
http://en.wikipedia.org/w/index.php?title=UniData
http://en.wikipedia.org/w/index.php?title=UniVerse

Comparison of relational database management systems 206

Xeround

Cloud

Database

Static TINYINT (8-bit),

SMALLINT

(16-bit),

MEDIUMINT

(24-bit), INT

(32-bit), BIGINT

(64-bit)

FLOAT (32-bit),

DOUBLE (aka

REAL) (64-bit)

DECIMAL CHAR, BINARY,

VARCHAR,

VARBINARY, TEXT,

TINYTEXT,

MEDIUMTEXT,

LONGTEXT

TINYBLOB, BLOB,

MEDIUMBLOB,

LONGBLOB

DATETIME, DATE,

TIMESTAMP,

YEAR

BOOLEAN

(aka

BOOL) =

synonym

for

TINYINT

ENUM, SET

Type

system

Integer Floating point Decimal String Binary Date/Time Boolean Other

Other objects
Information about what other objects are supported natively.

Data Domain Cursor Trigger Function 1 Procedure 1 External
routine 1

4th Dimension Yes No Yes Yes Yes Yes

ADABAS ? Yes ? Yes? Yes? Yes

Adaptive Server Enterprise Yes Yes Yes Yes Yes Yes

Advantage Database Server Yes Yes Yes Yes Yes Yes

Altibase Yes Yes Yes Yes Yes Yes

Apache Derby No Yes Yes Yes 2 Yes 2 Yes 2

Clustrix No Yes No Yes Yes Yes

CUBRID Yes Yes Yes Yes Yes 2 Yes

Drizzle Yes Yes Yes 4 Yes 4 Yes 4 Yes 4

Empress Embedded Database Yes via RANGE CHECK Yes Yes Yes Yes Yes

EXASolution Yes No No Yes Yes Yes

DB2 Yes via CHECK
CONSTRAINT

Yes Yes Yes Yes Yes

Firebird Yes Yes Yes Yes Yes Yes

HSQLDB Yes No Yes Yes Yes Yes

H2 Yes No Yes 2 Yes 2 Yes 2 Yes

Informix Dynamic Server Yes via CHECK Yes Yes Yes Yes Yes 5

Ingres Yes Yes Yes Yes Yes Yes

InterBase Yes Yes Yes Yes Yes Yes

Linter SQL RDBMS No Yes Yes Yes Yes No

LucidDB No Yes No Yes 2 Yes 2 Yes 2

MaxDB Yes Yes Yes Yes Yes ?

Microsoft Access (JET)
Yes No No No

Yes, But single DML/DDL
Operation

Yes

Microsoft Visual Foxpro No Yes Yes Yes Yes Yes

Microsoft SQL Server Yes (2000 and beyond) Yes Yes Yes Yes Yes

http://en.wikipedia.org/w/index.php?title=Xeround
http://en.wikipedia.org/w/index.php?title=Xeround
http://en.wikipedia.org/w/index.php?title=Xeround
http://en.wikipedia.org/w/index.php?title=Type_system
http://en.wikipedia.org/w/index.php?title=Type_system
http://en.wikipedia.org/w/index.php?title=Integer_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Floating_point
http://en.wikipedia.org/w/index.php?title=String_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Binary_large_object
http://en.wikipedia.org/w/index.php?title=Boolean_data_type
http://en.wikipedia.org/w/index.php?title=Data_Domain
http://en.wikipedia.org/w/index.php?title=Function_%28programming%29
http://en.wikipedia.org/w/index.php?title=Subroutine
http://en.wikipedia.org/w/index.php?title=4th_Dimension_%28Software%29
http://en.wikipedia.org/w/index.php?title=ADABAS
http://en.wikipedia.org/w/index.php?title=Adaptive_Server_Enterprise
http://en.wikipedia.org/w/index.php?title=Advantage_Database_Server
http://en.wikipedia.org/w/index.php?title=Altibase
http://en.wikipedia.org/w/index.php?title=Apache_Derby
http://en.wikipedia.org/w/index.php?title=Clustrix
http://en.wikipedia.org/w/index.php?title=CUBRID
http://en.wikipedia.org/w/index.php?title=Drizzle_%28database_server%29
http://en.wikipedia.org/w/index.php?title=Empress_database
http://en.wikipedia.org/w/index.php?title=EXASOL
http://en.wikipedia.org/w/index.php?title=IBM_DB2
http://en.wikipedia.org/w/index.php?title=Firebird_%28database_server%29
http://en.wikipedia.org/w/index.php?title=HSQLDB
http://en.wikipedia.org/w/index.php?title=H2_%28DBMS%29
http://en.wikipedia.org/w/index.php?title=Informix_Dynamic_Server
http://en.wikipedia.org/w/index.php?title=Ingres_%28database%29
http://en.wikipedia.org/w/index.php?title=InterBase
http://en.wikipedia.org/w/index.php?title=Linter_SQL_RDBMS
http://en.wikipedia.org/w/index.php?title=LucidDB
http://en.wikipedia.org/w/index.php?title=MaxDB
http://en.wikipedia.org/w/index.php?title=Microsoft_Access
http://en.wikipedia.org/w/index.php?title=Microsoft_Visual_Foxpro
http://en.wikipedia.org/w/index.php?title=Microsoft_SQL_Server

Comparison of relational database management systems 207

Microsoft SQL Server Compact
(Embedded Database)

No Yes No No No No

MonetDB No No Yes Yes Yes Yes

MySQL No 3 Yes Yes Yes Yes Yes

OpenBase SQL Yes Yes Yes Yes Yes Yes

Oracle Yes Yes Yes Yes Yes Yes

Oracle Rdb Yes Yes Yes Yes Yes Yes

OpenLink Virtuoso Yes Yes Yes Yes Yes Yes

Pervasive PSQL Yes Yes Yes Yes Yes No

Polyhedra DBMS No No Yes Yes Yes Yes

PostgreSQL Yes Yes Yes Yes Yes Yes

RDM Embedded No Yes No No Yes Yes

RDM Server No Yes Yes No Yes Yes

ScimoreDB No No No No Yes Yes

SQL Anywhere Yes Yes Yes Yes Yes Yes

SQLite No No Yes No No Yes

Teradata No Yes Yes Yes Yes Yes

UniData No No Yes Yes Yes Yes

UniVerse No No Yes Yes Yes Yes

Xeround Cloud Database No 3 Yes Yes Yes Yes No

Data Domain Cursor Trigger Function 1 Procedure 1 External
routine 1

Note (1): Both function and procedure refer to internal routines written in SQL and/or procedural language like
PL/SQL. External routine refers to the one written in the host languages, such as C, Java, Cobol, etc. "Stored
procedure" is a commonly used term for these routine types. However, its definition varies between different
database vendors.
Note (2): In Derby, H2, LucidDB, and CUBRID, users code functions and procedures in Java.
Note (3): ENUM datatype exist. CHECK clause is parsed, but not enforced in runtime.
Note (4): In Drizzle the user codes functions and procedures in C++.
Note (5): Informix supports external functions written in Java, C, & C++.

Partitioning
Information about what partitioning methods are supported natively.

http://en.wikipedia.org/w/index.php?title=SQL_Server_Compact
http://en.wikipedia.org/w/index.php?title=SQL_Server_Compact
http://en.wikipedia.org/w/index.php?title=MonetDB
http://en.wikipedia.org/w/index.php?title=MySQL
http://en.wikipedia.org/w/index.php?title=OpenBase
http://en.wikipedia.org/w/index.php?title=Oracle_Database
http://en.wikipedia.org/w/index.php?title=Oracle_Rdb
http://en.wikipedia.org/w/index.php?title=Virtuoso_Universal_Server
http://en.wikipedia.org/w/index.php?title=Pervasive_PSQL
http://en.wikipedia.org/w/index.php?title=Polyhedra_DBMS
http://en.wikipedia.org/w/index.php?title=PostgreSQL
http://en.wikipedia.org/w/index.php?title=RDM_Embedded
http://en.wikipedia.org/w/index.php?title=RDM_Server
http://en.wikipedia.org/w/index.php?title=ScimoreDB
http://en.wikipedia.org/w/index.php?title=SQL_Anywhere
http://en.wikipedia.org/w/index.php?title=SQLite
http://en.wikipedia.org/w/index.php?title=Teradata
http://en.wikipedia.org/w/index.php?title=UniData
http://en.wikipedia.org/w/index.php?title=UniVerse
http://en.wikipedia.org/w/index.php?title=Xeround
http://en.wikipedia.org/w/index.php?title=Data_Domain
http://en.wikipedia.org/w/index.php?title=Function_%28programming%29
http://en.wikipedia.org/w/index.php?title=Subroutine
http://en.wikipedia.org/w/index.php?title=PL/SQL

Comparison of relational database management systems 208

Range Hash Composite
(Range+Hash)

List Expression

4th Dimension ? ? ? ? ?

ADABAS ? ? ? ? ?

Adaptive Server
Enterprise

Yes Yes No Yes
?

Advantage Database
Server

No No No No
?

Altibase Yes Yes No Yes ?

Apache Derby No No No No ?

Clustrix Yes No No No No

CUBRID Yes Yes No Yes ?

IBM DB2 Yes Yes Yes Yes ?

Empress Embedded
Database

No No No No
?

EXASolution No Yes No No No

Firebird No No No No ?

HSQLDB No No No No ?

H2 No No No No ?

Informix Dynamic Server Yes Yes Yes Yes Yes

Ingres Yes Yes Yes Yes ?

InterBase No No No No ?

Linter SQL RDBMS No No No No ?

MaxDB No No No No ?

Microsoft Access (JET) No No No No ?

Microsoft Visual Foxpro No No No No ?

Microsoft SQL Server Yes No No No ?

Microsoft SQL Server
Compact (Embedded
Database)

No No No No
?

MonetDB Yes (M5) Yes (M5) Yes (M5) No ?

MySQL Yes Yes Yes Yes ?

OpenBase SQL ? ? ? ? ?

Oracle Yes Yes Yes Yes ?

Oracle Rdb Yes Yes ? ? ?

OpenLink Virtuoso Yes Yes Yes Yes Yes

Pervasive PSQL No No No No No

Polyhedra DBMS No No No No No

PostgreSQL Yes1 Yes1 Yes1 Yes1 ?

RDM Embedded Yes2 Yes2 Yes2 No ?

http://en.wikipedia.org/w/index.php?title=4th_Dimension_%28Software%29
http://en.wikipedia.org/w/index.php?title=ADABAS
http://en.wikipedia.org/w/index.php?title=Adaptive_Server_Enterprise
http://en.wikipedia.org/w/index.php?title=Adaptive_Server_Enterprise
http://en.wikipedia.org/w/index.php?title=Advantage_Database_Server
http://en.wikipedia.org/w/index.php?title=Advantage_Database_Server
http://en.wikipedia.org/w/index.php?title=Altibase
http://en.wikipedia.org/w/index.php?title=Apache_Derby
http://en.wikipedia.org/w/index.php?title=Clustrix
http://en.wikipedia.org/w/index.php?title=CUBRID
http://en.wikipedia.org/w/index.php?title=IBM_DB2
http://en.wikipedia.org/w/index.php?title=Empress_database
http://en.wikipedia.org/w/index.php?title=Empress_database
http://en.wikipedia.org/w/index.php?title=EXASOL
http://en.wikipedia.org/w/index.php?title=Firebird_%28database_server%29
http://en.wikipedia.org/w/index.php?title=HSQLDB
http://en.wikipedia.org/w/index.php?title=H2_%28DBMS%29
http://en.wikipedia.org/w/index.php?title=Informix_Dynamic_Server
http://en.wikipedia.org/w/index.php?title=Ingres_%28database%29
http://en.wikipedia.org/w/index.php?title=InterBase
http://en.wikipedia.org/w/index.php?title=Linter_SQL_RDBMS
http://en.wikipedia.org/w/index.php?title=MaxDB
http://en.wikipedia.org/w/index.php?title=Microsoft_Access
http://en.wikipedia.org/w/index.php?title=Microsoft_Visual_Foxpro
http://en.wikipedia.org/w/index.php?title=Microsoft_SQL_Server
http://en.wikipedia.org/w/index.php?title=SQL_Server_Compact
http://en.wikipedia.org/w/index.php?title=SQL_Server_Compact
http://en.wikipedia.org/w/index.php?title=SQL_Server_Compact
http://en.wikipedia.org/w/index.php?title=MonetDB
http://en.wikipedia.org/w/index.php?title=MySQL
http://en.wikipedia.org/w/index.php?title=OpenBase
http://en.wikipedia.org/w/index.php?title=Oracle_Database
http://en.wikipedia.org/w/index.php?title=Oracle_Rdb
http://en.wikipedia.org/w/index.php?title=Virtuoso_Universal_Server
http://en.wikipedia.org/w/index.php?title=Pervasive_PSQL
http://en.wikipedia.org/w/index.php?title=Polyhedra_DBMS
http://en.wikipedia.org/w/index.php?title=PostgreSQL
http://en.wikipedia.org/w/index.php?title=RDM_Embedded

Comparison of relational database management systems 209

RDM Server No No No No ?

ScimoreDB No Yes No No ?

SQL Anywhere No No No No ?

SQLite No No No No ?

Teradata Yes Yes Yes Yes ?

UniVerse Yes Yes Yes Yes ?

Xeround Cloud Database N/A - partitioning
provided

transparently

N/A - partitioning
provided

transparently

N/A - partitioning
provided transparently

N/A - partitioning
provided

transparently

N/A - partitioning
provided

transparently

Range Hash Composite
(Range+Hash)

List Expression

Note (1): PostgreSQL 8.1 provides partitioning support through check constraints. Range, List and Hash methods
can be emulated with PL/pgSQL or other procedural languages.
Note (2): RDM Embedded 10.1 requires the application programs to select the correct partition (using range, hash or
composite techniques) when adding data, but the database union functionality allows all partitions to be read as a
single database.

Access control
Information about access control functionalities (work in progress).

Native
network

encryption1

Brute-force
protection

Enterprise
directory

compatibility

Password
complexity

rules2

Patch
access3

Run
unprivileged4

Audit Resource
limit

Separation
of duties
(RBAC)5

Security
Certification

Label
Based
Access

Control
(LBAC)

4D Yes (with
SSL)

? ? ? ? ? ? ? ? ? ?

Adaptive
Server
Enterprise

Yes
(optional; to

pay)
Yes

Yes (optional
?)

Yes

Partial
(need to
register;
depend

on which
product)

Yes Yes Yes Yes Yes
(EAL4+ 1)

?

Advantage
Database
Server

Yes No No No Yes Yes No No Yes
? ?

DB2
Yes

? Yes (LDAP,
Kerberos…)

Yes
?

Yes Yes Yes Yes Yes
(EAL4+6)

?

Empress
Embedded
Database

? ?
No No Yes Yes Yes No Yes No

?

EXASolution No No Yes (LDAP) No Yes Yes Yes Yes Yes No ?

Firebird

No Yes
Yes (Windows

trusted
authenification)

No

Partial
(no

security
page)

Yes No No No7

? ?

HSQLDB Yes No Yes Yes Yes Yes No No Yes No ?

http://en.wikipedia.org/w/index.php?title=RDM_Server
http://en.wikipedia.org/w/index.php?title=ScimoreDB
http://en.wikipedia.org/w/index.php?title=SQL_Anywhere
http://en.wikipedia.org/w/index.php?title=SQLite
http://en.wikipedia.org/w/index.php?title=Teradata
http://en.wikipedia.org/w/index.php?title=UniVerse
http://en.wikipedia.org/w/index.php?title=Xeround
http://en.wikipedia.org/w/index.php?title=PL/pgSQL
http://en.wikipedia.org/w/index.php?title=Role-based_access_control
http://en.wikipedia.org/w/index.php?title=4th_Dimension_%28software%29
http://en.wikipedia.org/w/index.php?title=Adaptive_Server_Enterprise
http://en.wikipedia.org/w/index.php?title=Adaptive_Server_Enterprise
http://en.wikipedia.org/w/index.php?title=Adaptive_Server_Enterprise
http://en.wikipedia.org/w/index.php?title=Advantage_Database_Server
http://en.wikipedia.org/w/index.php?title=Advantage_Database_Server
http://en.wikipedia.org/w/index.php?title=Advantage_Database_Server
http://en.wikipedia.org/w/index.php?title=IBM_DB2
http://en.wikipedia.org/w/index.php?title=Empress_database
http://en.wikipedia.org/w/index.php?title=Empress_database
http://en.wikipedia.org/w/index.php?title=Empress_database
http://en.wikipedia.org/w/index.php?title=EXASOL
http://en.wikipedia.org/w/index.php?title=Firebird_%28database_server%29
http://en.wikipedia.org/w/index.php?title=HSQLDB

Comparison of relational database management systems 210

H2 Yes Yes ? No ? Yes ? Yes Yes No ?

Informix
Dynamic
Server

Yes
?

Yes10
?10

Yes Yes Yes Yes Yes
?

Yes

Linter SQL
RDBMS

Yes (with
SSL)

Yes Yes
Yes (length

only)
No Yes Yes Yes Yes Yes Yes

MariaDB

Yes (SSL) No

Yes (with 5.2,
but not on
Windows
servers)

No

Partial
(no

security
page)

Yes

? ? ?8

No

?

Microsoft
SQL Server Yes

? Yes (Microsoft
Active

Directory)
Yes Yes Yes

Yes
(From
2008)

Yes Yes Yes
(EAL4+11)

?

Microsoft
SQL Server
Compact
(Embedded
Database)

No (not
relevant,
only file

permissions)

No (not
relevant)

No (not
relevant)

No (not
relevant)

Yes
Yes (file
access)

Yes Yes No

? ?

MySQL
Yes (SSL
with 4.0)

No

Yes (with 5.5,
but only in
commercial

edition)

No

Partial
(no

security
page)

Yes

? ? ?8

No

?

OpenBase
SQL Yes

? Yes (Open
Directory,

LDAP)
No

? ? ? ? ? ? ?

OpenLink
Virtuoso

Yes Yes Yes Yes (optional)
Yes

(optional)
Yes

Yes
(optional)

Yes
(optional)

Yes No
?

Oracle
Yes Yes Yes Yes

?
Yes Yes Yes Yes Yes

(EAL4+1)

?

Pervasive
PSQL

Yes
?

No No Yes Yes Yes 12 No No No
?

Polyhedra
DBMS

No No No No No Yes Yes 13 Yes Yes 13 No
?

PostgreSQL

Yes
Yes (for

9.1)
Yes (LDAP,
Kerberos…9)

Yes (as of 9.0
with

passwordcheck
module)

Yes Yes No Yes Yes Yes (EAL11)

?

RDM
Embedded

No No No No No Yes No No No No
?

RDM Server Yes No No No No Yes Yes No Yes No ?

SQL
Anywhere

Yes

?

Yes (Kerberos) Yes

?

Yes Yes No Yes

Yes
(EAL3+1 as

Adaptive
Server

Anywhere)

?

SQLite No (not
relevant,
only file

permissions)

No (not
relevant)

No (not
relevant)

No (not
relevant)

Partial
(no

security
page)

Yes (file
access)

Yes Yes No No

?

http://en.wikipedia.org/w/index.php?title=H2_%28DBMS%29
http://en.wikipedia.org/w/index.php?title=Informix_Dynamic_Server
http://en.wikipedia.org/w/index.php?title=Informix_Dynamic_Server
http://en.wikipedia.org/w/index.php?title=Informix_Dynamic_Server
http://en.wikipedia.org/w/index.php?title=Linter_SQL_RDBMS
http://en.wikipedia.org/w/index.php?title=Linter_SQL_RDBMS
http://en.wikipedia.org/w/index.php?title=MariaDB
http://en.wikipedia.org/w/index.php?title=Microsoft_SQL_Server
http://en.wikipedia.org/w/index.php?title=Microsoft_SQL_Server
http://en.wikipedia.org/w/index.php?title=SQL_Server_Compact
http://en.wikipedia.org/w/index.php?title=SQL_Server_Compact
http://en.wikipedia.org/w/index.php?title=SQL_Server_Compact
http://en.wikipedia.org/w/index.php?title=SQL_Server_Compact
http://en.wikipedia.org/w/index.php?title=SQL_Server_Compact
http://en.wikipedia.org/w/index.php?title=MySQL
http://en.wikipedia.org/w/index.php?title=OpenBase
http://en.wikipedia.org/w/index.php?title=OpenBase
http://en.wikipedia.org/w/index.php?title=OpenLink_Virtuoso
http://en.wikipedia.org/w/index.php?title=OpenLink_Virtuoso
http://en.wikipedia.org/w/index.php?title=Oracle_Database
http://en.wikipedia.org/w/index.php?title=Pervasive_PSQL
http://en.wikipedia.org/w/index.php?title=Pervasive_PSQL
http://en.wikipedia.org/w/index.php?title=Polyhedra_DBMS
http://en.wikipedia.org/w/index.php?title=Polyhedra_DBMS
http://en.wikipedia.org/w/index.php?title=PostgreSQL
http://en.wikipedia.org/w/index.php?title=RDM_Embedded
http://en.wikipedia.org/w/index.php?title=RDM_Embedded
http://en.wikipedia.org/w/index.php?title=RDM_Server
http://en.wikipedia.org/w/index.php?title=SQL_Anywhere
http://en.wikipedia.org/w/index.php?title=SQL_Anywhere
http://en.wikipedia.org/w/index.php?title=SQLite

Comparison of relational database management systems 211

Xeround
Cloud
Database

Yes (SSL
with 4.0)

No No No

N/A -
database

as a
service

Yes No No No No

?

Native
network

encryption1

Brute-force
protection

Enterprise
directory

compatibility

Password
complexity

rules2

Patch
access3

Run
unprivileged4

Audit Resource
limit

Separation
of duties
(RBAC)5

Security
Certification

Label
Based
Access

Control
(LBAC)

Note (1): Network traffic could be transmitted in a secure way (not clear-text, in general SSL encryption). Precise if
option is default, included option or an extra modules to buy.
Note (2): Options are present to set a minimum size for password, respect complexity like presence of numbers or
special characters.
Note (3): How do you get security updates? Is it free access, do you need a login or to pay? Is there easy access
through a Web/FTP portal or RSS feed or only through offline access (mail CD-ROM, phone).
Note (4): Does database process run as root/administrator or unprivileged user? What is default configuration?
Note (5): Is there a separate user to manage special operation like backup (only dump/restore permissions), security
officer (audit), administrator (add user/create database), etc.? Is it default or optional?
Note (6): Common Criteria certified product list.
Note (7): FirebirdSQL seems to only have SYSDBA user and DB owner. There are no separate roles for backup
operator and security administrator.
Note (8): User can define a dedicated backup user but nothing particular in default install.
Note (9): Authentication methods.
Note (10): Informix Dynamic Server supports PAM and other configurable authentication. By default uses OS
authentication.
Note (11): Authentication methods.
Note (12): With the use of Pervasive AuditMaster.
Note (13): User-based security is optional in Polyhedra, but when enabled can be enhanced to a role-based model
with auditing.

Databases vs schemas (terminology)
The SQL specification makes clear what an "SQL schema" is; however, different databases implement it incorrectly.
To compound this confusion the functionality can, when incorrectly implemented, overlap with that of the
parent-database. An SQL schema is simply a namespace within a database, things within this namespace are
addressed using the member operator dot ".". This seems to be a universal amongst all of the implementations.
A true fully (database, schema, and table) qualified query is exemplified as such: SELECT * FROM

database.schema.table

Now, the issue, both a schema and a database can be used to isolate one table, "foo" from another like named table
"foo". The following is pseudo code:
• SELECT * FROM db1.foo vs. SELECT * FROM db2.foo (no explicit schema between db and table)
• SELECT * FROM [db1.]default.foo vs. SELECT * FROM [db1.]alternate.foo (no explicit

db prefix)
The problem that arises is that former MySQL users will create multiple databases for one project. In this context,
MySQL databases are analogous in function to Postgres-schemas, insomuch as Postgres lacks off-the-shelf

http://en.wikipedia.org/w/index.php?title=Xeround
http://en.wikipedia.org/w/index.php?title=Xeround
http://en.wikipedia.org/w/index.php?title=Xeround
http://en.wikipedia.org/w/index.php?title=Role-based_access_control
http://en.wikipedia.org/w/index.php?title=Comparison_of_relational_database_management_systems%23ac_1
http://en.wikipedia.org/w/index.php?title=Comparison_of_relational_database_management_systems%23ac_2
http://en.wikipedia.org/w/index.php?title=Comparison_of_relational_database_management_systems%23ac_3
http://en.wikipedia.org/w/index.php?title=Comparison_of_relational_database_management_systems%23ac_4
http://en.wikipedia.org/w/index.php?title=Comparison_of_relational_database_management_systems%23ac_5
http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=Namespace
http://en.wikipedia.org/w/index.php?title=Operator_%28programming%29
http://en.wikipedia.org/w/index.php?title=Fully_qualified_name
http://en.wikipedia.org/w/index.php?title=MySQL

Comparison of relational database management systems 212

cross-database functionality that MySQL has. Conversely, PostgreSQL has applied more of the specification
implementing cross-table, cross-schema, and then left room for future cross-database functionality.
MySQL aliases schema with database behind the scenes, such that CREATE SCHEMA and CREATE DATABASE
are analogs. It can therefore be said that MySQL has implemented cross-database functionality, skipped schema
functionality entirely, and provided similar functionality into their implementation of a database. In summary,
Postgres fully supports schemas but lacks some functionality MySQL has with databases, while MySQL does not
even attempt to support true schemas.
Oracle has its own spin where creating a user is synonymous with creating a schema. Thus a database administrator
can create a user called PROJECT and then create a table PROJECT.TABLE. Users can exist without schema
objects, but an object is always associated with an owner (though that owner may not have privileges to connect to
the database). With the Oracle 'shared-everything' RAC architecture, the same database can be opened by multiple
servers concurrently. This is independent of replication, which can also be used, whereby the data is copied for use
by different server. In the Oracle view, the 'database' is a set of files which contains the data while the 'instance' is a
set of processes (and memory) through which a database is accessed.
Informix supports multiple databases in a server instance, like MySQL. It supports the CREATE SCHEMA syntax
as a way to group DDL statements into a single unit creating all objects created as a part of the schema as a single
owner. Informix supports a database mode called ANSI mode which supports creating objects with the same name
but owned by different users.
The end result is confusion between the database factions. The Postgres and Oracle communities maintain that one
database is all that is needed for one project, per the definition of database. MySQL and Informix proponents
maintain that schemas have no legitimate purpose when the functionality can be achieved with databases. Postgres
adheres to the SQL specification, in a more intuitive fashion (bottom-up), while MySQL’s pragmatic
counterargument allows their users to get the job done while creating conceptual confusion.

References
[1] hsqldb (http:/ / sourceforge. net/ projects/ hsqldb/ files/ hsqldb/ hsqldb_2_2/)
[2] http:/ / techotv. com/ run-apache-mysql-php-http-web-server-android-os-phone-tablet/ Run Apache, Mysql, Php – Web server on Android

mobile or Tablet
[3] http:/ / www. oss4zos. org/ mediawiki/ index. php?title=PostgreSQL#z. 2FOS
[4] Transactional DDL in PostgreSQL: A Competitive Analysis (http:/ / wiki. postgresql. org/ wiki/

Transactional_DDL_in_PostgreSQL:_A_Competitive_Analysis)
[5] SQLite Full Unicode support is optional and not installed by default in most systems (http:/ / www. sqlite. org/ faq. html#q18) (like Android,

Debian…)
[6] http:/ / grokbase. com/ t/ postgresql/ pgsql-general/ 12bsww982c/ large-insert-leads-to-invalid-memory-alloc
[7] http:/ / www. postgresql. org/ docs/ 9. 3/ static/ lo-intro. html
[8] The SQLite R*Tree Module (http:/ / www. sqlite. org/ rtree. html)
[9] SQLite Partial Indexes (http:/ / sqlite. org/ partialindex. html)
[10] SQLite FTS3 Extension (http:/ / www. sqlite. org/ fts3. html)
[11][11] geospatial
[12] How does Drizzle handle parallel "things"? (https:/ / answers. launchpad. net/ drizzle/ + question/ 135548)
[13] New Features in HyperSQL 2.2 (http:/ / hsqldb. org/ web/ features200. html)
[14] H2 > Advanced > Recursive Queries (http:/ / h2database. com/ html/ advanced. html#recursive_queries)
[15] H2 Roadmap (http:/ / www. h2database. com/ html/ roadmap. html)
[16] Informix parallel data query (PDQ) (http:/ / portal. acm. org/ citation. cfm?id=382443)

http://en.wikipedia.org/w/index.php?title=PostgreSQL
http://en.wiktionary.org/wiki/pragmatic
http://sourceforge.net/projects/hsqldb/files/hsqldb/hsqldb_2_2/
http://techotv.com/run-apache-mysql-php-http-web-server-android-os-phone-tablet/
http://www.oss4zos.org/mediawiki/index.php?title=PostgreSQL#z.2FOS
http://wiki.postgresql.org/wiki/Transactional_DDL_in_PostgreSQL:_A_Competitive_Analysis
http://wiki.postgresql.org/wiki/Transactional_DDL_in_PostgreSQL:_A_Competitive_Analysis
http://www.sqlite.org/faq.html#q18
http://en.wikipedia.org/w/index.php?title=Android_%28operating_system%29
http://en.wikipedia.org/w/index.php?title=Debian
http://grokbase.com/t/postgresql/pgsql-general/12bsww982c/large-insert-leads-to-invalid-memory-alloc
http://www.postgresql.org/docs/9.3/static/lo-intro.html
http://www.sqlite.org/rtree.html
http://sqlite.org/partialindex.html
http://www.sqlite.org/fts3.html
http://en.wikipedia.org/w/index.php?title=Teradata_Geospatial
https://answers.launchpad.net/drizzle/+question/135548
http://hsqldb.org/web/features200.html
http://h2database.com/html/advanced.html#recursive_queries
http://www.h2database.com/html/roadmap.html
http://portal.acm.org/citation.cfm?id=382443

Comparison of relational database management systems 213

External links
• Comparison of different SQL implementations against SQL standards (http:/ / troels. arvin. dk/ db/ rdbms/).

Includes Oracle, DB2, Microsoft SQL Server, MySQL and PostgreSQL. (08/Jun/2007)

• Features, strengths and weaknesses comparison between Oracle and MSSQL (independent). (http:/ / www.
wisdomforce. com/ resources/ docs/ MSSQL2005_ORACLE10g_compare. pdf)

• The SQL92 standard (http:/ / www. contrib. andrew. cmu. edu/ ~shadow/ sql/ sql1992. txt)
• MetaMarket Druid IMDB (http:/ / metamarkets. com/ druid/)
• VM-Ware Redis IMDB (http:/ / redis. io/)
• CSQL DB (http:/ / www. csqldb. com)

Document-oriented database
A document-oriented database is a computer program designed for storing, retrieving, and managing
document-oriented information, also known as semi-structured data. Document-oriented databases are one of the
main categories of so-called NoSQL databases and the popularity of the term "document-oriented database" (or
"document store") has grown[citation needed] with the use of the term NoSQL itself. In contrast to well-known
relational databases and their notions of "Relations" (or "Tables"), these systems are designed around an abstract
notion of a "Document".

Documents
The central concept of a document-oriented database is the notion of a Document. While each document-oriented
database implementation differs on the details of this definition, in general, they all assume documents encapsulate
and encode data (or information) in some standard formats or encodings. Encodings in use include XML, YAML,
JSON, and BSON, as well as binary forms like PDF and Microsoft Office documents (MS Word, Excel, and so on).
Documents inside a document-oriented database are similar, in some ways, to records or rows in relational databases,
but they are less rigid. They are not required to adhere to a standard schema, nor will they have all the same sections,
slots, parts, or keys. For example, the following is a document:

 {

 FirstName: "Bob",

 Address: "5 Oak St.",

 Hobby: "sailing"

 }

A second document might be:

 {

 FirstName: "Jonathan",

 Address: "15 Wanamassa Point Road",

 Children: [

 {Name: "Michael", Age: 10},

 {Name: "Jennifer", Age: 8},

 {Name: "Samantha", Age: 5},

 {Name: "Elena", Age: 2}

]

 }

http://troels.arvin.dk/db/rdbms/
http://www.wisdomforce.com/resources/docs/MSSQL2005_ORACLE10g_compare.pdf
http://www.wisdomforce.com/resources/docs/MSSQL2005_ORACLE10g_compare.pdf
http://www.contrib.andrew.cmu.edu/~shadow/sql/sql1992.txt
http://metamarkets.com/druid/
http://redis.io/
http://www.csqldb.com
http://en.wikipedia.org/w/index.php?title=Computer_program
http://en.wikipedia.org/w/index.php?title=Semi-structured_model
http://en.wikipedia.org/wiki/Citation_needed
http://en.wikipedia.org/w/index.php?title=Relational_databases
http://en.wikipedia.org/w/index.php?title=XML
http://en.wikipedia.org/w/index.php?title=YAML
http://en.wikipedia.org/w/index.php?title=JSON
http://en.wikipedia.org/w/index.php?title=BSON

Document-oriented database 214

These two documents share some structural elements with one another, but each also has unique elements. Unlike a
relational database where every record contains the same fields, leaving unused fields empty; there are no empty
'fields' in either document (record) in the above example. This approach allows new information to be added to some
records without requiring that every other record in the database shares the same structure.

Keys
Documents are addressed in the database via a unique key that represents that document. This key is often a simple
string, a URI, or a path. The key can be used to retrieve the document from the database. Typically, the database
retains an index on the key to speed up document retrieval.

Retrieval
Another defining characteristic of a document-oriented database is that, beyond the simple key-document (or
key-value) lookup that can be used to retrieve a document, the database offers an API or query language that allows
the user to retrieve documents based on their content. For example, you may want a query that retrieves all the
documents with a certain field set to a certain value. The set of query APIs or query language features available, as
well as the expected performance of the queries, varies significantly from one implementation to the next.

Organization
Implementations offer a variety of ways of organizing documents, including notions of
•• Collections
•• Tags
•• Non-visible Metadata
•• Directory hierarchies
•• Buckets

Implementations

Name Publisher License Language Notes RESTful
API

ArangoDB [1] triAGENS [2] Apache 2 License C, C++ &
Javascript

A multi model, high-performance document store
and graph database.

Yes [3]

BaseX BaseX Team [4] BSD License Java, XQuery Support for XML, JSON and binary formats;
client-/server based architecture; concurrent
structural and full-text searches and updates; REST
APIs.

Yes

Cassandra Apache
Software
Foundation

Apache License Java JSON over HTTP Yes

Cloudant Cloudant, Inc.
[5]

Proprietary Erlang, Java,
Scala, and C

Distributed database service based on BigCouch, the
company's open source fork of the Apache-backed
CouchDB project.

Yes

Clusterpoint Clusterpoint
Ltd. [6]

Free community license /
Commercial[7]

C++ Schema-free, document-oriented database
management system platform with server based data
storage, full text search engine functionality,
information ranking for search relevance and
clustering.

Yes

Couchbase
Server

Couchbase, Inc. Apache License Erlang and C Distributed NoSQL Document Database. Yes [8]

http://en.wikipedia.org/w/index.php?title=Representational_State_Transfer
http://www.arangodb.org/
http://www.triagens.com/
http://en.wikipedia.org/w/index.php?title=Apache_2_License
http://en.wikipedia.org/w/index.php?title=C_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=C%2B%2B
http://en.wikipedia.org/w/index.php?title=Javascript
http://en.wikipedia.org/w/index.php?title=BaseX
http://basex.org/
http://en.wikipedia.org/w/index.php?title=BSD_License
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=XQuery
http://en.wikipedia.org/w/index.php?title=Apache_Cassandra
http://en.wikipedia.org/w/index.php?title=Apache_Software_Foundation
http://en.wikipedia.org/w/index.php?title=Apache_Software_Foundation
http://en.wikipedia.org/w/index.php?title=Apache_Software_Foundation
http://en.wikipedia.org/w/index.php?title=Apache_License
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Cloudant
https://cloudant.com/
http://en.wikipedia.org/w/index.php?title=Proprietary_software
http://en.wikipedia.org/w/index.php?title=Erlang_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Scala_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=C_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=BigCouch
http://en.wikipedia.org/w/index.php?title=Open_source
http://en.wikipedia.org/w/index.php?title=Apache_Software_Foundation
http://en.wikipedia.org/w/index.php?title=CouchDB
http://en.wikipedia.org/w/index.php?title=Clusterpoint
http://www.clusterpoint.com
http://en.wikipedia.org/w/index.php?title=Commercial_software
http://en.wikipedia.org/w/index.php?title=C%2B%2B
http://en.wikipedia.org/w/index.php?title=Database_management_system
http://en.wikipedia.org/w/index.php?title=Database_management_system
http://en.wikipedia.org/w/index.php?title=Full_text_search
http://en.wikipedia.org/w/index.php?title=Ranking
http://en.wikipedia.org/w/index.php?title=Cluster_computing
http://en.wikipedia.org/w/index.php?title=Couchbase_Server
http://en.wikipedia.org/w/index.php?title=Couchbase_Server
http://en.wikipedia.org/w/index.php?title=Couchbase%2C_Inc.
http://en.wikipedia.org/w/index.php?title=Apache_License
http://en.wikipedia.org/w/index.php?title=Erlang_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=C_%28programming_language%29

Document-oriented database 215

CouchDB Apache
Software
Foundation

Apache License Erlang JSON over REST/HTTP with Multi-Version
Concurrency Control and limited ACID properties.
Uses map and reduce for views and queries.[9]

Yes [10]

eXist eXist, [11] GPL XQuery, Java XML over REST/HTTP, WebDAV, Lucene Fulltext
search, validation, versioning, clustering, triggers,
URL rewriting, collections, ACLS, XQuery Update

Yes [12]

FleetDB FleetDB [13] MIT License Clojure A JSON-based [14] schema-free database optimized
for agile development.

(unknown)

Jackrabbit Apache
Software
Foundation

Apache License Java (unknown)

Inquire Infodata
Systems, Inc.

Proprietary unknown In the mid-80's this was the dominant
document-oriented commercial database, widely
successful. The company seems to have gone out of
business in 2005.

(unknown)

Lotus Notes IBM Proprietary LotusScript,
Java, Lotus
@Formula

(unknown)

MarkLogic MarkLogic
Corporation

Free Express license [15]

or Commercial [15]
REST, Java,
XQuery, XSLT,
C++

Distributed document-oriented database with
Multi-Version Concurrency Control, integrated Full
text search and ACID-compliant transaction
semantics

Yes

MongoDB MongoDB, Inc GNU AGPL v3.0[16] C++ Document-oriented database optimized for highly
transient data

Optional
[17]

MUMPS
Database[18]

Proprietary and Affero
GPL[19]

MUMPS Commonly used in health applications. (unknown)

OrientDB Orient
Technologies
[20]

Apache License Java JSON over HTTP Yes

RavenDB Hibernating
Rhinos LTD
[21]

Proprietary and modified
Affero GPL[22]

C#, JavaScript Yes

Redis BSD License ANSI C Key-value store supporting lists and sets with
binary-safe protocol

(unknown)

RethinkDB GNU APGL for the
DBMS, Apache 2
License for the client
drivers

C++ (unknown)

Rocket U2 Rocket
Software

Proprietary UniData, UniVerse Yes (Beta)

Sqrrl
Enterprise [23]

sqrrl Proprietary Java Distributed, real-time database featuring cell-level
security and massive scalability.

Yes

http://en.wikipedia.org/w/index.php?title=CouchDB
http://en.wikipedia.org/w/index.php?title=Apache_Software_Foundation
http://en.wikipedia.org/w/index.php?title=Apache_Software_Foundation
http://en.wikipedia.org/w/index.php?title=Apache_Software_Foundation
http://en.wikipedia.org/w/index.php?title=Apache_License
http://en.wikipedia.org/w/index.php?title=Erlang_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Multi-Version_Concurrency_Control
http://en.wikipedia.org/w/index.php?title=Multi-Version_Concurrency_Control
http://en.wikipedia.org/w/index.php?title=Map_%28higher-order_function%29
http://en.wikipedia.org/w/index.php?title=Fold_%28higher-order_function%29
http://en.wikipedia.org/w/index.php?title=EXist
http://en.wikipedia.org/w/index.php?title=EXist
http://exist-db.org
http://en.wikipedia.org/w/index.php?title=GPL
http://en.wikipedia.org/w/index.php?title=XQuery
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=FleetDB
http://fleetdb.org/
http://en.wikipedia.org/w/index.php?title=MIT_License
http://en.wikipedia.org/w/index.php?title=Clojure
http://fleetdb.org/docs/protocol.html
http://en.wikipedia.org/w/index.php?title=Apache_Jackrabbit
http://en.wikipedia.org/w/index.php?title=Apache_Software_Foundation
http://en.wikipedia.org/w/index.php?title=Apache_Software_Foundation
http://en.wikipedia.org/w/index.php?title=Apache_Software_Foundation
http://en.wikipedia.org/w/index.php?title=Apache_License
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Infodata
http://en.wikipedia.org/w/index.php?title=Infodata
http://en.wikipedia.org/w/index.php?title=Proprietary_software
http://en.wikipedia.org/w/index.php?title=Lotus_Notes
http://en.wikipedia.org/w/index.php?title=Proprietary_software
http://en.wikipedia.org/w/index.php?title=LotusScript
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=MarkLogic
http://developer.marklogic.com/licensing
http://developer.marklogic.com/licensing
http://en.wikipedia.org/w/index.php?title=REST
http://en.wikipedia.org/w/index.php?title=Java
http://en.wikipedia.org/w/index.php?title=XQuery
http://en.wikipedia.org/w/index.php?title=XSLT
http://en.wikipedia.org/w/index.php?title=C%2B%2B
http://en.wikipedia.org/w/index.php?title=Multi-Version_Concurrency_Control
http://en.wikipedia.org/w/index.php?title=Full_text_search
http://en.wikipedia.org/w/index.php?title=Full_text_search
http://en.wikipedia.org/w/index.php?title=MongoDB
http://en.wikipedia.org/w/index.php?title=Affero_General_Public_License
http://en.wikipedia.org/w/index.php?title=C%2B%2B
http://en.wikipedia.org/w/index.php?title=MUMPS
http://en.wikipedia.org/w/index.php?title=Proprietary_software
http://en.wikipedia.org/w/index.php?title=Affero_General_Public_License
http://en.wikipedia.org/w/index.php?title=Affero_General_Public_License
http://en.wikipedia.org/w/index.php?title=MUMPS
http://en.wikipedia.org/w/index.php?title=OrientDB
http://www.orientechnologies.com/
http://en.wikipedia.org/w/index.php?title=Apache_License
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=RavenDB
http://hibernatingrhinos.com
http://en.wikipedia.org/w/index.php?title=Proprietary_software
http://en.wikipedia.org/w/index.php?title=Affero_General_Public_License
http://en.wikipedia.org/w/index.php?title=C_Sharp_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=JavaScript
http://en.wikipedia.org/w/index.php?title=Redis
http://en.wikipedia.org/w/index.php?title=BSD_License
http://en.wikipedia.org/w/index.php?title=ANSI_C
http://en.wikipedia.org/w/index.php?title=RethinkDB
http://en.wikipedia.org/w/index.php?title=Affero_General_Public_License
http://en.wikipedia.org/w/index.php?title=Apache_2_License
http://en.wikipedia.org/w/index.php?title=Apache_2_License
http://en.wikipedia.org/w/index.php?title=C%2B%2B
http://en.wikipedia.org/w/index.php?title=Rocket_U2
http://en.wikipedia.org/w/index.php?title=Proprietary_software
http://sqrrl.com/
http://en.wikipedia.org/w/index.php?title=Sqrrl
http://en.wikipedia.org/w/index.php?title=Proprietary_software
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29

Document-oriented database 216

XML database implementations
Most XML databases are document-oriented databases.

References
[1] http:/ / www. arangodb. org/
[2] http:/ / www. triagens. com/
[3] ArangoDB REST API (http:/ / www. arangodb. org/ manuals/ current/ ImplementorManual. html)
[4] http:/ / basex. org/
[5] https:/ / cloudant. com/
[6] http:/ / www. clusterpoint. com
[7] Clusterpoint DBMS Licensing Options (http:/ / www. clusterpoint. com/ licensing/)
[8] Documentation (http:/ / www. couchbase. com/ docs/). Couchbase. Retrieved on 2013-09-18.
[9] CouchDB Overview (http:/ / couchdb. apache. org/ docs/ overview. html)
[10] CouchDB Document API (http:/ / wiki. apache. org/ couchdb/ HTTP_Document_API)
[11] http:/ / exist-db. org
[12] eXist-db Open Source Native XML Database (http:/ / exist-db. org). Exist-db.org. Retrieved on 2013-09-18.
[13] http:/ / fleetdb. org/
[14] http:/ / fleetdb. org/ docs/ protocol. html
[15] http:/ / developer. marklogic. com/ licensing
[16] MongoDB License (http:/ / www. mongodb. org/ display/ DOCS/ Licensing)
[17] MongoDB REST Interfaces (http:/ / www. mongodb. org/ display/ DOCS/ Http+ Interface#HttpInterface-RESTInterfaces)
[18] Extreme Database programming with MUMPS Globals (http:/ / gradvs1. mgateway. com/ download/ extreme1. pdf)
[19] GTM MUMPS FOSS on SourceForge (http:/ / sourceforge. net/ projects/ fis-gtm/)
[20] http:/ / www. orientechnologies. com/
[21] http:/ / hibernatingrhinos. com
[22] Ravendb Licensing (http:/ / ravendb. net/ licensing)
[23] http:/ / sqrrl. com/

Further reading
• Assaf Arkin. (2007, September 20). Read Consistency: Dumb Databases, Smart Services. (http:/ / blog. labnotes.

org/ 2007/ 09/ 20/ read-consistency-dumb-databases-smart-services/) Labnotes:Don’t let the bubble go to your
head!

External links
• http:/ / solprovider. com/ articles/ 20020612& cat=Lotus/ IBM

http://www.arangodb.org/
http://www.triagens.com/
http://www.arangodb.org/manuals/current/ImplementorManual.html
http://basex.org/
https://cloudant.com/
http://www.clusterpoint.com
http://www.clusterpoint.com/licensing/
http://www.couchbase.com/docs/
http://couchdb.apache.org/docs/overview.html
http://wiki.apache.org/couchdb/HTTP_Document_API
http://exist-db.org
http://exist-db.org
http://fleetdb.org/
http://fleetdb.org/docs/protocol.html
http://developer.marklogic.com/licensing
http://www.mongodb.org/display/DOCS/Licensing
http://www.mongodb.org/display/DOCS/Http+Interface#HttpInterface-RESTInterfaces
http://gradvs1.mgateway.com/download/extreme1.pdf
http://sourceforge.net/projects/fis-gtm/
http://www.orientechnologies.com/
http://hibernatingrhinos.com
http://ravendb.net/licensing
http://sqrrl.com/
http://blog.labnotes.org/2007/09/20/read-consistency-dumb-databases-smart-services/
http://blog.labnotes.org/2007/09/20/read-consistency-dumb-databases-smart-services/
http://solprovider.com/articles/20020612&cat=Lotus/IBM

Graph database 217

Graph database
A graph database is a database that uses graph structures with nodes, edges, and properties to represent and store
data. By definition, a graph database is any storage system that provides index-free adjacency. This means that every
element contains a direct pointer to its adjacent element and no index lookups are necessary. General graph
databases that can store any graph are distinct from specialized graph databases such as triplestores and network
databases.

Structure
Graph databases are based on graph theory. Graph databases employ nodes, properties, and edges. Nodes are very
similar in nature to the objects that object-oriented programmers will be familiar with.

Nodes represent entities such as people, businesses, accounts, or any other item you might want to keep track of.
Properties are pertinent information that relate to nodes. For instance, if "Wikipedia" were one of the nodes, one
might have it tied to properties such as "website", "reference material", or "word that starts with the letter 'w'",
depending on which aspects of "Wikipedia" are pertinent to the particular database.
Edges are the lines that connect nodes to nodes or nodes to properties and they represent the relationship between the
two. Most of the important information is really stored in the edges. Meaningful patterns emerge when one examines
the connections and interconnections of nodes, properties, and edges.

http://en.wikipedia.org/w/index.php?title=Graph_%28data_structure%29
http://en.wikipedia.org/w/index.php?title=Storage_system
http://en.wikipedia.org/w/index.php?title=Pointer_%28computer_programming%29
http://en.wikipedia.org/w/index.php?title=Lookup
http://en.wikipedia.org/w/index.php?title=Triplestore
http://en.wikipedia.org/w/index.php?title=Network_database_model
http://en.wikipedia.org/w/index.php?title=Network_database_model
http://en.wikipedia.org/w/index.php?title=Graph_theory
http://en.wikipedia.org/w/index.php?title=Object-oriented
http://en.wikipedia.org/w/index.php?title=File:GraphDatabase_PropertyGraph.png

Graph database 218

Properties
Compared with relational databases, graph databases are often faster for associative data sets[citation needed], and map
more directly to the structure of object-oriented applications. They can scale more naturally to large data sets as they
do not typically require expensive join operations. As they depend less on a rigid schema, they are more suitable to
manage ad hoc and changing data with evolving schemas. Conversely, relational databases are typically faster at
performing the same operation on large numbers of data elements.
Graph databases are a powerful tool for graph-like queries, for example computing the shortest path between two
nodes in the graph. Other graph-like queries can be performed over a graph database in a natural way (for example
graph's diameter computations or community detection).

Graph database projects
The following is a list of several well-known graph database projects:[1]

Name Version License Language Description

AllegroGraph 4.11
(June
2013)

Proprietary, Clients - Eclipse
Public License v1

C, Common
Lisp, Java,
Python

A RDF and graph database.

ArangoDB [2] 1.3.2
(June
2013)

Apache 2 C, C++ &
Javascript

A multi-model document store and graph database.

Bigdata [3] GPL Java A RDF/graph database capable of clustered deployment.

Bitsy [4] 1.5.0 AGPL, Enterprise license
(unlimited use,
annual/perpetual)

Java A small, embeddable, durable in-memory graph database

BrightstarDB [5] MIT License [6] C# An embeddable NoSQL database for the .NET platform with
code-first data model generation.

DEX[7] 4.8
(2013)

evaluation, research or
development use (free) /
commercial use

C++ A high-performance and scalable graph database management
system from Sparsity Technologies [8], a technology transition
company from DAMA-UPC [9]. Its main characteristics is its
query performance for the retrieval & exploration of large
networks

Filament [10] BSD Java A graph persistence framework and associated toolkits based on a
navigational query style.

GraphBase [11] 1.0.03a Proprietary Java A customizable, distributed, small-footprint graph store with a rich
tool set from FactNexus [12].

Graphd Proprietary The proprietary back-end of Freebase.

Horton [13] Proprietary C# A graph database from Microsoft Research Extreme Computing
Group (XCG) [14] based on the cloud programming infrastructure
Orleans [15].

HyperGraphDB
[16]

1.2
(2012)

LGPL Java A graph database supporting generalized hypergraphs where edges
can point to other edges.

InfiniteGraph
[17]

3.0
(January
2013)

GPLv3 Java A distributed and cloud-enabled commercial product with flexible
licensing.

InfoGrid [18] 2.9.5
(2011)

AGPLv3, free for small
entities[19]

Java A graph database with web front end and configurable storage
engines (MySQL, PostgreSQL, Files, Hadoop).

http://en.wikipedia.org/w/index.php?title=Relational_databases
http://en.wikipedia.org/wiki/Citation_needed
http://en.wikipedia.org/w/index.php?title=Join_%28SQL%29
http://en.wikipedia.org/w/index.php?title=AllegroGraph
http://en.wikipedia.org/w/index.php?title=Proprietary_software
http://en.wikipedia.org/w/index.php?title=C_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Common_Lisp_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Common_Lisp_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Python_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Resource_Description_Framework
http://www.arangodb.org
http://en.wikipedia.org/w/index.php?title=Apache_2_License
http://en.wikipedia.org/w/index.php?title=C_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=C%2B%2B
http://en.wikipedia.org/w/index.php?title=Javascript
http://www.bigdata.com/blog
http://en.wikipedia.org/w/index.php?title=GPL
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://bitbucket.org/lambdazen/bitsy
http://en.wikipedia.org/w/index.php?title=AGPL
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://www.brightstardb.com
http://en.wikipedia.org/w/index.php?title=MIT_License
http://en.wikipedia.org/w/index.php?title=C_Sharp_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=DEX_%28Graph_database%29
http://sparsity-technologies.com
http://www.dama.upc.edu/technology-transfer/dex
http://filament.sourceforge.net/
http://en.wikipedia.org/w/index.php?title=BSD_licenses
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://graphbase.net/
http://en.wikipedia.org/w/index.php?title=Proprietary_software
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://factnexus.com/
http://en.wikipedia.org/w/index.php?title=Proprietary_software
http://en.wikipedia.org/w/index.php?title=Freebase
http://research.microsoft.com/en-us/projects/ldg
http://research.microsoft.com/en-us/labs/xcg
http://research.microsoft.com/en-us/projects/orleans/default.aspx
http://www.hypergraphdb.org
http://en.wikipedia.org/w/index.php?title=LGPL
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Hypergraph
http://infinitegraph.com
http://en.wikipedia.org/w/index.php?title=GPLv3
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://infogrid.org/
http://en.wikipedia.org/w/index.php?title=AGPLv3
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29

Graph database 219

jCoreDB Graph
[20]

An extensible database engine with a graph database subproject.

Neo4j 1.9.2 [21]

(July
2013)

GPLv3 Community Edition.
Commercial & AGPLv3 options
for Enterprise and
Advanced editions[22]

Java A highly scalable open source graph database that supports ACID,
has high-availability clustering for enterprise deployments, and
comes with a web-based administration tool that includes full
transaction support and visual node-link graph explorer.[23] Neo4j
is accessible from most programming languages using its built-in
REST web API interface. Neo4j is the most popular graph
database in use today.[24]

OpenLink
Virtuoso

A RDF graph database server, deployable as a local embedded
instance (as used in the Nepomuk Semantic Desktop), a
single-instance network server, or a shared-nothing network
cluster instance.

Oracle Spatial
and Graph [25]

11.2
(2012)

Proprietary Java,
PL/SQL

1) RDF Semantic Graph: comprehensive W3C RDF graph
management in Oracle Database with native reasoning and
triple-level label security. 2) Network Data Model property graph:
for physical/logical networks with persistent storage and a Java
API for in-memory graph analytics.

Oracle NoSQL
Database [26]

2.0.39
(2013)

Proprietary Java RDF Graph for Oracle NoSQL Database is a feature of Enterprise
Edition providing W3C RDF graph capabilities in NoSQL
Database.

OrientDB 1.3
(2012)

Apache 2 Java A document-graph database.

OQGRAPH [27] GPLv2 A graph computation engine for MySQL, MariaDB and Drizzle.

Ontotext
OWLIM [28]

5.3 OWLIM Lite is free
OWLIM SE and Enterprise are
commercially licenced

Java A graph database engine, based entirely on Semantic Web
standards from W3C: RDF, RDFS, OWL, SPARQL. OWLIM Lite
is an "in memory" engine. OWLIM SE is robust standalone
database engine. OWLIM Enterprise is a clustered version which
offers horizontal scalability and failover support and other
enterprise features.

R2DF [29] R2DF framework for ranked path queries over weighted RDF
graphs.

ROIS [30] Freeware Modula-2 A programmable knowledge server that supports inheritance and
transitivity. Used in OpenGALEN as a Terminology Server.

sones GraphDB AGPLv3[31] C# A graph database and universal access layer (funded by Deutsche
Telekom).

Sqrrl Enterprise
[23]

v1.1
(2013)

Proprietary Java Distributed, real-time graph database featuring cell-level security
and massive scalability.

Teradata Aster
[32]

v6 (2013) Proprietary Java, SQL,
Python,
C++, R

A high performance, multi-purpose, highly scalable and extensible
MPP database incorporating patented engines supporting native
SQL, MapReduce and Graph data storage and manipulation. An
extensive set of analytical function libraries and data visualization
capabilities are also provided.

Titan [33] 0.3
(2013)

Apache 2 Java A distributed, real-time, transactional graph database developed by
Aurelius [34].

VelocityGraph
[35]

Open source with proprietary
back-end

C# High performance, scalable & flexible graph database build with
VelocityDB [36] object database.

VertexDB [37] Revised BSD C A graph database server that supports automatic garbage
collection.

http://www.jcoredb.org
http://en.wikipedia.org/w/index.php?title=Neo4j
http://www.neo4j.org/download
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=REST
http://en.wikipedia.org/w/index.php?title=Web_API
http://en.wikipedia.org/w/index.php?title=OpenLink_Software
http://en.wikipedia.org/w/index.php?title=Virtuoso_Universal_Server
http://en.wikipedia.org/w/index.php?title=NEPOMUK_%28framework%29
http://www.oracle.com/technetwork/database-options/spatialandgraph/overview/index.html
http://en.wikipedia.org/w/index.php?title=Proprietary_software
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://www.oracle.com/technetwork/products/nosqldb/overview/index.html
http://en.wikipedia.org/w/index.php?title=Proprietary_software
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=OrientDB
http://en.wikipedia.org/w/index.php?title=Apache_2_License
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://openquery.com/graph
http://en.wikipedia.org/w/index.php?title=GPLv2
http://en.wikipedia.org/w/index.php?title=MySQL
http://en.wikipedia.org/w/index.php?title=MariaDB
http://en.wikipedia.org/w/index.php?title=Drizzle_%28database_server%29
http://en.wikipedia.org/w/index.php?title=Ontotext
http://www.ontotext.com/owlim
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://dl.acm.org/citation.cfm?id=1988736/
http://rois.eggbird.eu/
http://en.wikipedia.org/w/index.php?title=Freeware
http://en.wikipedia.org/w/index.php?title=Modula-2
http://en.wikipedia.org/w/index.php?title=Inheritance_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Transitive_relation
http://en.wikipedia.org/w/index.php?title=OpenGALEN
http://en.wikipedia.org/w/index.php?title=Terminology_Server
http://en.wikipedia.org/w/index.php?title=Sones_GraphDB
http://en.wikipedia.org/w/index.php?title=AGPLv3
http://en.wikipedia.org/w/index.php?title=C_Sharp_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Deutsche_Telekom
http://en.wikipedia.org/w/index.php?title=Deutsche_Telekom
http://sqrrl.com/
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://www.asterdata.com/
http://en.wikipedia.org/w/index.php?title=Proprietary_software
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=Python_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=C%2B%2B_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=R_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Massive_parallel_processing
http://titan.thinkaurelius.com/
http://en.wikipedia.org/w/index.php?title=Apache_2_License
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://thinkaurelius.com
http://www.VelocityGraph.com
http://en.wikipedia.org/w/index.php?title=C_Sharp_%28programming_language%29
http://www.VelocityDB.com
http://www.dekorte.com/projects/opensource/vertexdb/
http://en.wikipedia.org/w/index.php?title=BSD_licenses
http://en.wikipedia.org/w/index.php?title=C_%28programming_language%29

Graph database 220

Graph database features
The following table compares the features of the above graph databases.

Name Graph Model API Query Methods Visualizer Consistency Backend Scalability

AllegroGraph RDF Java,
Java:Sesame,
JavaJena,
Python,
Ruby, Perl,
C#, Clojure,
Lisp, Scala,
REST

SPARQL 1.1,
Prolog, JIG,
JavaScript

Gruff - View
Graphs, Visual
Query Builder for
SPARQL and
Prolog

ACID Native Graph
Storage

1 Trillion RDF
triples

ArangoDB [2] Property Graph [38] JavaScript,
Blueprints,
REST

Graph Traversals
via JavaScript,
Gremlin

MVCC/ACID native C/C++

Bigdata [3]

Bitsy [4] Property Graph Blueprints Gremlin, Pixy
[39]

ACID with
optimistic
concurrency
control

Human-readable
JSON-encoded
text files with
checksums and
markers for
recovery

DEX[40] Labeled and directed
attributed multigraph

Java, C++,
.NET

Native Java, C#
and C++ APIs,
Blueprints,
Gremlin

Exporting
functionality to
visualization
formats

Consistency,
durability and
partial
isolation and
atomicity

Native graph.
light and
independent
data structures
with a small
memory
footprint for
storage

Master/Slave
replication

Filament [10]

GraphBase
Enterprise(1)
[41] GraphBase
Agility(2) [42]

(1) mixed, (2)
Framework-managed
Simple Graph

Java Bounds
Language,
embedded java

GraphPad,
BoundsPad,
Navigator

ACID,
graph-based
transactions

proprietary
native

(1) shared
nothing
distributed, (2)
simple
replication,
100+ Billion
arcs per server

Graphd

Horton [13] Attributed
multigraph

Horton Query
Language
(Regular
Language
Expression +
SQL)

C#, .Net
Framework,
Asynchronous
communication
protocols

HyperGraphDB
[16]

Object-oriented
multi-relational
labeled hypergraph

Custom,Java MVCC/STM

http://en.wikipedia.org/w/index.php?title=AllegroGraph
http://en.wikipedia.org/w/index.php?title=RDF
http://www.arangodb.org
https://github.com/tinkerpop/blueprints/wiki/Property-Graph-Model
http://www.bigdata.com/blog
http://bitbucket.org/lambdazen/bitsy
https://github.com/lambdazen/pixy/wiki
http://en.wikipedia.org/w/index.php?title=DEX_%28Graph_database%29
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=C%2B%2B
http://en.wikipedia.org/w/index.php?title=.NET_Framework
http://filament.sourceforge.net/
http://graphbase.net/Enterprise.html/
http://graphbase.net/Agility.html/
http://research.microsoft.com/en-us/projects/ldg
http://www.hypergraphdb.org

Graph database 221

InfiniteGraph
[17]

Labeled and directed
multi-property graph

Java,
Blueprints

Java (with
parallel,
distributed
queries), Gremlin

Graph browser for
developers. Plugins
to allow use of
external libraries.

ACID. There
is also a
parallel,
loosely
synchronized
batch loader.

Objectivity/DB
on standard
filesystems

Distributed &
Sharded.
Objectivity/DB
was the first
DBMS to store
a Petabyte of
objects.

InfoGrid [18] Dynamically typed,
object-oriented
graph, multigraphs,
semantic models

jCoreDB Graph
[20]

Neo4j Property Graph Java,
Python,
JPython,
Ruby,
JRuby,
JavaScript
(Node.js),
PHP, .NET,
Django,
Clojure,
Spring,
Scala, or
REST (any
language)

Cypher
(native/preferred),
Native Java APIs
(special cases),
Traverser API,
REST,
Blueprints,
Gremlin

Data Browser
included. Supports
a variety of 3rd
party tools: Gephi,
Linkurio.us,
Cytoscape, Tom
Sawyer, Keylines,
etc.

ACID Native graph
storage with
native graph
processing
engine

Horizontal
read scaling
via
master-slave
clustering
with cache
sharding.

OpenLink

Oracle Spatial
and Graph [25]

RDF graph: Triple &
Quad (named
graphs); Network
Data Model property
graph

Java;
Apache
Jena;
PL/SQL

SPARQL 1.1;
SPARQL web
service end point;
SQL

SPARQL-compliant
tools; Apache
Jena-based tools;
XML &
JSON-based tools;
SQL based tools

ACID Efficient,
compressed,
partitioned
graph storage;
Native persisted
in-database
inferencing;
SPARQL 1.1 &
SQL
integration;
Triple-level
label security;
Semantic
indexing of
documents

Parallel load,
query,
inference;
Query
controls;
Scales from
PC to Oracle
Exadata;
Supports
Oracle Real
Application
Clusters and
Oracle
Database 8
exabytes

Oracle NoSQL
Database [26]

RDF graph: Triple
default graph, Triple
& Quad named
graphs

Java
(Apache
Jena)

SPARQL 1.1;
SPARQL web
service end point

SPARQL-compliant
tools; Apache
Jena-based tools;
XML &
JSON-based tools

ACID;
Configurable
consistency
& durability
policies

Key/value store;
W3C SPARQL
1.1 & Update;
In-memory
RDFS/OWL
inferencing

Parallel
load/query;
Query controls
for: parallel
execution,
timeout, query
optimization
hints

http://infinitegraph.com
http://en.wikipedia.org/w/index.php?title=Objectivity/DB
http://infogrid.org/
http://www.jcoredb.org
http://en.wikipedia.org/w/index.php?title=Neo4j
http://en.wikipedia.org/w/index.php?title=OpenLink_Software
http://www.oracle.com/technetwork/database-options/spatialandgraph/overview/index.html
http://www.oracle.com/technetwork/products/nosqldb/overview/index.html

Graph database 222

OrientDB Property Graph Java
Traverser
API,
Blueprints,
Rexster

Own SQL-like
Query Language,
Gremlin

ACID,
MVCC

Custom on disc
or in memory

OQGRAPH
[27]

R2DF [29]

ROIS [30]

sones GraphDB

Sqrrl Enterprise
[43]

Property Graph Thrift,
Blueprint

Gremlin Integrates with 3rd
party tools

Eventually
Consistent

Accumulo Distributed
cluster with
tens of trillions
of edges [44]

Titan [45] Property Graph Java,
Blueprints,
REST,
RexPro
binary
protocol
(any
language)

Gremlin,
SPARQL

Integrates with 3rd
party tools

ACID or
Eventually
Consistent

Cassandra,
HBase,
Berkeley DB

Distributed
cluster (120
billion+ edges)
or single
server.

VertexDB [37]

Distributed Graph Processing
• Angrapa [46] - graph package in Hama [47], a bulk synchronous parallel (BSP) platform
• Apache Hama [47] - a pure BSP(Bulk Synchronous Parallel) computing framework on top of HDFS (Hadoop

Distributed File System) for massive scientific computations such as matrix, graph and network algorithms.
• Bigdata [3] - a RDF/graph database capable of clustered deployment.
• Faunus [48] - a Hadoop-based graph computing framework that uses Gremlin as its query language. Faunus

provides connectivity to Titan, Rexster-fronted graph databases, and to text/binary graph formats stored in HDFS.
Faunus is developed by Aurelius [34].

• FlockDB - an open source distributed, fault-tolerant graph database based on MySQL and the Gizzard framework
for managing Twitter-like graph data (single-hop relationships) FlockDB on GitHub [49].

• Giraph [50] - a Graph processing infrastructure that runs on Hadoop (see Pregel).
• GraphBase [51] - Enterprise Edition supports embedding of callable Java Agents within the vertices of a

distributed graph.
• GoldenOrb [52] - Pregel implementation built on top of Apache Hadoop
• GraphLab [53] - A framework for machine learning and data mining in the cloud
• HipG [54] - a library for high-level parallel processing of large-scale graphs. HipG is implemented in Java and is

designed for distributed-memory machine
• InfiniteGraph [17] - a commercially available distributed graph database that supports parallel load and parallel

queries.
• JPregel [55] - In-memory java based Pregel implementation
• KDT [56] - An open-source distributed graph library with a Python front-end and C++/MPI backend

(Combinatorial BLAS [57]).

http://en.wikipedia.org/w/index.php?title=OrientDB
http://openquery.com/graph
http://dl.acm.org/citation.cfm?id=1988736/
http://rois.eggbird.eu/
http://en.wikipedia.org/w/index.php?title=Sones_GraphDB
http://sqrrl.com
http://www.pdl.cmu.edu/SDI/2013/slides/big_graph_nsa_rd_2013_56002v1.pdf
http://thinkaurelius.github.com/titan/
http://www.dekorte.com/projects/opensource/vertexdb/
http://wiki.apache.org/hama/GraphPackage
http://incubator.apache.org/hama/
http://en.wikipedia.org/w/index.php?title=Bulk_Synchronous_Parallel
http://incubator.apache.org/hama/
http://www.bigdata.com/blog
http://thinkaurelius.github.com/faunus/
http://thinkaurelius.com
http://en.wikipedia.org/w/index.php?title=FlockDB
http://en.wikipedia.org/w/index.php?title=MySQL
http://en.wikipedia.org/w/index.php?title=Gizzard_%28Scala_framework%29
https://github.com/twitter/flockdb
http://incubator.apache.org/giraph/
http://graphbase.net/Enterprise.html
http://www.goldenorbos.org
http://graphlab.org
http://www.cs.vu.nl/~ekr/hipg/
http://infinitegraph.com
http://kowshik.github.com/JPregel/
http://kdt.sourceforge.net
http://gauss.cs.ucsb.edu/~aydin/CombBLAS/html/index.html

Graph database 223

• OpenLink Virtuoso - the shared-nothing Cluster Edition supports distributed graph data processing.
• Oracle Spatial and Graph [25] - loading, inferencing, and querying workloads are automatically and transparently

distributed across the nodes in an Oracle Real Application Cluster, Oracle Exadata Database Machine, and Oracle
Database Appliance.

• Phoebus [58] - Pregel implementation written in Erlang
• Pregel [59] - Google's internal graph processing platform, released details in ACM paper.
• Powergraph [60] - Distributed graph-parallel computation on natural graphs.
• Sedge [61] - A framework for distributed large graph processing and graph partition management (including an

open source version of Google's Pregel)
• Signal/Collect [62] - a framework for parallel graph processing written in Scala
• Sqrrl Enterprise - distributed graph processing utilizing Apache Accumulo and featuring cell-level security,

massive scalability, and JSON support
• Titan [45] - A distributed, disk-based graph database developed by Aurelius [34].
• Trinity [63] - Distributed in-memory graph engine under development at Microsoft Research Labs.
• Parallel Boost Graph Library (PBGL) [64] - a C++ library for graph processing on distributed machines, part of

Boost framework.
• Mizan [65] - An optimized Pregel clone that can be deployed easily on Amazon EC2, or local clusters, or

stand-alone Linux systems.

APIs and Graph Query/Programming Languages
• Bounds Language [66] - terse C-style syntax which initiates concurrent traversals in GraphBase and supports

interaction between them.
• Blueprints [67] - a Java API for Property Graphs from TinkerPop [68] and supported by a few graph database

vendors.
• Blueprints.NET [69] - a C#/.NET API for generic Property Graphs.
• Bulbflow [70] - a Python persistence framework for Rexster, Titan, and Neo4j Server.
• Cypher [71] - a declarative graph query language for Neo4j that enables ad hoc as well as programmatic

(SQL-like) access to the graph
• Gremlin [72] - an open-source graph programming language that works over various graph database systems.
• Neo4jClient [73] - a .NET client for accessing Neo4j.
• Neography [74] - a thin Ruby wrapper that provides access to Neo4j via REST.
• Neo4jPHP [75] - a PHP library wrapping the Neo4j graph database.
• NodeNeo4j [76] - a Node.js driver for Neo4j that provides access to Neo4j via REST
• Pacer [77] - a Ruby dialect/implementation of the Gremlin graph traversal language.
• Pipes [78] - a lazy dataflow framework written in Java that forms the foundation for various property graph

traversal languages.
• Pixy [39] - a declarative graph query language that works on any Blueprints-compatible graph database
• PYBlueprints [79] - a Python API for Property Graphs.
• Pygr [80] - a Python API for large-scale analysis of biological sequences and genomes, with alignments

represented as graphs.
• Rexster [81] - a graph database server that provides a REST or binary protocol API (RexPro). Supports Titan,

Neo4j, OrientDB, Dex, and any TinkerPop/Blueprints-enabled graph.
• SPARQL - a query language for databases, able to retrieve and manipulate data stored in Resource Description

Framework format.
• SPASQL [82] - an extension of the SQL standard, allowing execution of SPARQL queries within SQL statements,

typically by treating them as subquery or function clauses. This also allows SPARQL queries to be issued through
"traditional" data access APIs (ODBC, JDBC, OLE DB, ADO.NET, etc.)

http://en.wikipedia.org/w/index.php?title=OpenLink_Software
http://en.wikipedia.org/w/index.php?title=Virtuoso_Universal_Server
http://www.oracle.com/technetwork/database-options/spatialandgraph/overview/index.html
http://github.com/xslogic/phoebus
http://portal.acm.org/citation.cfm?id=1582723
http://graphlab.org/powergraph-presented-at-osdi/
http://grafia.cs.ucsb.edu/sedge/
http://code.google.com/p/signal-collect/
http://en.wikipedia.org/w/index.php?title=Sqrrl
http://en.wikipedia.org/w/index.php?title=Apache_Accumulo
http://thinkaurelius.github.com/titan/
http://thinkaurelius.com
http://research.microsoft.com/en-us/projects/trinity/
http://www.boost.org/doc/libs/1_51_0/libs/graph_parallel/doc/html/index.html
http://en.wikipedia.org/w/index.php?title=C%2B%2B
http://en.wikipedia.org/w/index.php?title=Boost_%28C%2B%2B_libraries%29
http://thegraphsblog.wordpress.com/the-graph-blog/mizan/
http://graphbase.net/JavaAPIHelp.html#BoundsLanguage
http://blueprints.tinkerpop.com
http://www.tinkerpop.com/
https://github.com/Vanaheimr/Blueprints.NET
http://bulbflow.com
http://docs.neo4j.org/chunked/snapshot/cypher-query-lang.html
http://en.wikipedia.org/w/index.php?title=Neo4j
http://gremlin.tinkerpop.com/
http://hg.readify.net/neo4jclient
http://en.wikipedia.org/w/index.php?title=Neo4j
https://github.com/maxdemarzi/neography/
http://en.wikipedia.org/w/index.php?title=Neo4j
https://github.com/jadell/neo4jphp/wiki
https://github.com/thingdom/node-neo4j
http://en.wikipedia.org/w/index.php?title=Neo4j
http://github.com/pangloss/pacer
http://pipes.tinkerpop.com
https://github.com/lambdazen/pixy/wiki
http://pypi.python.org/pypi/pyblueprints/0.1
http://code.google.com/p/pygr/
http://rexster.tinkerpop.com
http://en.wikipedia.org/w/index.php?title=SPARQL
http://en.wikipedia.org/w/index.php?title=Resource_Description_Framework
http://en.wikipedia.org/w/index.php?title=Resource_Description_Framework
http://www.w3.org/wiki/SPASQL
http://en.wikipedia.org/w/index.php?title=Open_Database_Connectivity
http://en.wikipedia.org/w/index.php?title=OLE_DB
http://en.wikipedia.org/w/index.php?title=ADO.NET

Graph database 224

• Spring Data Neo4j [83] - an extension to Spring Data [84] (part of the Spring Framework), providing direct/native
access to Neo4j

• Oracle SQL and PL/SQL APIs [25] - have graph extensions for Oracle Spatial and Graph.
• Styx [85] (previously named Pipes.Net) - a data flow framework for C#/.NET for processing generic graphs and

Property Graphs.
• Thunderdome [86] - a Titan Rexster Object-Graph Mapper for Python

References
[1] http:/ / graph-database. org
[2] http:/ / www. arangodb. org
[3] http:/ / www. bigdata. com/ blog
[4] http:/ / bitbucket. org/ lambdazen/ bitsy
[5] http:/ / www. brightstardb. com
[6] http:/ / brightstardb. com/ blog/ 2013/ 02/ brightstardb-goes-open-source/
[7] http:/ / sparsity-technologies. com/ dex
[8] http:/ / sparsity-technologies. com
[9] http:/ / www. dama. upc. edu/ technology-transfer/ dex
[10] http:/ / filament. sourceforge. net/
[11] http:/ / graphbase. net/
[12] http:/ / factnexus. com/
[13] http:/ / research. microsoft. com/ en-us/ projects/ ldg
[14] http:/ / research. microsoft. com/ en-us/ labs/ xcg
[15] http:/ / research. microsoft. com/ en-us/ projects/ orleans/ default. aspx
[16] http:/ / www. hypergraphdb. org
[17] http:/ / infinitegraph. com
[18] http:/ / infogrid. org/
[19] http:/ / infogrid. org/ wiki/ Docs/ License
[20] http:/ / www. jcoredb. org
[21] http:/ / www. neo4j. org/ download
[22] neo4j.org (http:/ / www. neo4j. org)
[23] Neo4j, World’s Leading Graph Database (http:/ / www. neotechnology. com/ neo4j-graph-database/). Retrieved September 16, 2013.
[24] DB-Engines Ranking of Graph DBMS (http:/ / db-engines. com/ en/ ranking/ graph+ dbms). Retrieved July 19, 2013.
[25] http:/ / www. oracle. com/ technetwork/ database-options/ spatialandgraph/ overview/ index. html
[26] http:/ / www. oracle. com/ technetwork/ products/ nosqldb/ overview/ index. html
[27] http:/ / openquery. com/ graph
[28] http:/ / www. ontotext. com/ owlim
[29] http:/ / dl. acm. org/ citation. cfm?id=1988736/
[30] http:/ / rois. eggbird. eu/
[31] http:/ / sones. com/
[32] http:/ / www. asterdata. com/
[33] http:/ / titan. thinkaurelius. com/
[34] http:/ / thinkaurelius. com
[35] http:/ / www. VelocityGraph. com
[36] http:/ / www. VelocityDB. com
[37] http:/ / www. dekorte. com/ projects/ opensource/ vertexdb/
[38] https:/ / github. com/ tinkerpop/ blueprints/ wiki/ Property-Graph-Model
[39] https:/ / github. com/ lambdazen/ pixy/ wiki
[40] http:/ / sparsity-technologies. com/ dex
[41] http:/ / graphbase. net/ Enterprise. html/
[42] http:/ / graphbase. net/ Agility. html/
[43] http:/ / sqrrl. com
[44] http:/ / www. pdl. cmu. edu/ SDI/ 2013/ slides/ big_graph_nsa_rd_2013_56002v1. pdf
[45] http:/ / thinkaurelius. github. com/ titan/
[46] http:/ / wiki. apache. org/ hama/ GraphPackage
[47] http:/ / incubator. apache. org/ hama/
[48] http:/ / thinkaurelius. github. com/ faunus/
[49] https:/ / github. com/ twitter/ flockdb

http://www.springsource.org/spring-data/neo4j
http://www.springsource.org/spring-data
http://en.wikipedia.org/w/index.php?title=Spring_Framework
http://en.wikipedia.org/w/index.php?title=Neo4j
http://www.oracle.com/technetwork/database-options/spatialandgraph/overview/index.html
https://github.com/ahzf/Styx
https://github.com/StartTheShift/thunderdome
http://graph-database.org
http://www.arangodb.org
http://www.bigdata.com/blog
http://bitbucket.org/lambdazen/bitsy
http://www.brightstardb.com
http://brightstardb.com/blog/2013/02/brightstardb-goes-open-source/
http://sparsity-technologies.com/dex
http://sparsity-technologies.com
http://www.dama.upc.edu/technology-transfer/dex
http://filament.sourceforge.net/
http://graphbase.net/
http://factnexus.com/
http://research.microsoft.com/en-us/projects/ldg
http://research.microsoft.com/en-us/labs/xcg
http://research.microsoft.com/en-us/projects/orleans/default.aspx
http://www.hypergraphdb.org
http://infinitegraph.com
http://infogrid.org/
http://infogrid.org/wiki/Docs/License
http://www.jcoredb.org
http://www.neo4j.org/download
http://www.neo4j.org
http://www.neotechnology.com/neo4j-graph-database/
http://db-engines.com/en/ranking/graph+dbms
http://www.oracle.com/technetwork/database-options/spatialandgraph/overview/index.html
http://www.oracle.com/technetwork/products/nosqldb/overview/index.html
http://openquery.com/graph
http://www.ontotext.com/owlim
http://dl.acm.org/citation.cfm?id=1988736/
http://rois.eggbird.eu/
http://sones.com/
http://www.asterdata.com/
http://titan.thinkaurelius.com/
http://thinkaurelius.com
http://www.VelocityGraph.com
http://www.VelocityDB.com
http://www.dekorte.com/projects/opensource/vertexdb/
https://github.com/tinkerpop/blueprints/wiki/Property-Graph-Model
https://github.com/lambdazen/pixy/wiki
http://sparsity-technologies.com/dex
http://graphbase.net/Enterprise.html/
http://graphbase.net/Agility.html/
http://sqrrl.com
http://www.pdl.cmu.edu/SDI/2013/slides/big_graph_nsa_rd_2013_56002v1.pdf
http://thinkaurelius.github.com/titan/
http://wiki.apache.org/hama/GraphPackage
http://incubator.apache.org/hama/
http://thinkaurelius.github.com/faunus/
https://github.com/twitter/flockdb

Graph database 225

[50] http:/ / incubator. apache. org/ giraph/
[51] http:/ / graphbase. net/ Enterprise. html
[52] http:/ / www. goldenorbos. org
[53] http:/ / graphlab. org
[54] http:/ / www. cs. vu. nl/ ~ekr/ hipg/
[55] http:/ / kowshik. github. com/ JPregel/
[56] http:/ / kdt. sourceforge. net
[57] http:/ / gauss. cs. ucsb. edu/ ~aydin/ CombBLAS/ html/ index. html
[58] http:/ / github. com/ xslogic/ phoebus
[59] http:/ / portal. acm. org/ citation. cfm?id=1582723
[60] http:/ / graphlab. org/ powergraph-presented-at-osdi/
[61] http:/ / grafia. cs. ucsb. edu/ sedge/
[62] http:/ / code. google. com/ p/ signal-collect/
[63] http:/ / research. microsoft. com/ en-us/ projects/ trinity/
[64] http:/ / www. boost. org/ doc/ libs/ 1_51_0/ libs/ graph_parallel/ doc/ html/ index. html
[65] http:/ / thegraphsblog. wordpress. com/ the-graph-blog/ mizan/
[66] http:/ / graphbase. net/ JavaAPIHelp. html#BoundsLanguage
[67] http:/ / blueprints. tinkerpop. com
[68] http:/ / www. tinkerpop. com/
[69] https:/ / github. com/ Vanaheimr/ Blueprints. NET
[70] http:/ / bulbflow. com
[71] http:/ / docs. neo4j. org/ chunked/ snapshot/ cypher-query-lang. html
[72] http:/ / gremlin. tinkerpop. com/
[73] http:/ / hg. readify. net/ neo4jclient
[74] https:/ / github. com/ maxdemarzi/ neography/
[75] https:/ / github. com/ jadell/ neo4jphp/ wiki
[76] https:/ / github. com/ thingdom/ node-neo4j
[77] http:/ / github. com/ pangloss/ pacer
[78] http:/ / pipes. tinkerpop. com
[79] http:/ / pypi. python. org/ pypi/ pyblueprints/ 0. 1
[80] http:/ / code. google. com/ p/ pygr/
[81] http:/ / rexster. tinkerpop. com
[82] http:/ / www. w3. org/ wiki/ SPASQL
[83] http:/ / www. springsource. org/ spring-data/ neo4j
[84] http:/ / www. springsource. org/ spring-data
[85] https:/ / github. com/ ahzf/ Styx
[86] https:/ / github. com/ StartTheShift/ thunderdome

External links
• NoSQL Frankfurt 2010 - The GraphDB Landscape and sones (http:/ / www. slideshare. net/ ahzf/

nosql-frankfurt-2010-the-graphdb-landscape-and-sones)
• Graph Databases and the Future of Large-Scale Knowledge Management (http:/ / highscalability. com/

paper-graph-databases-and-future-large-scale-knowledge-management)
• Graphs in the database: SQL meets social networks (http:/ / techportal. ibuildings. com/ 2009/ 09/ 07/

graphs-in-the-database-sql-meets-social-networks/)
• Social networks in the database: using a graph database (http:/ / blog. neo4j. org/ 2009/ 09/

social-networks-in-database-using-graph. html)
• Scaling Online Social Networks without Pains (http:/ / netdb09. cis. upenn. edu/ netdb09papers/ netdb09-final3.

pdf)
• Large-scale Graph Computing at Google (http:/ / googleresearch. blogspot. com/ 2009/ 06/

large-scale-graph-computing-at-google. html)
• Eric Lai. (2009, July 1). No to SQL? Anti-database movement gains steam (http:/ / www. computerworld. com/ s/

article/ 9135086/ No_to_SQL_Anti_database_movement_gains_steam_)

http://incubator.apache.org/giraph/
http://graphbase.net/Enterprise.html
http://www.goldenorbos.org
http://graphlab.org
http://www.cs.vu.nl/~ekr/hipg/
http://kowshik.github.com/JPregel/
http://kdt.sourceforge.net
http://gauss.cs.ucsb.edu/~aydin/CombBLAS/html/index.html
http://github.com/xslogic/phoebus
http://portal.acm.org/citation.cfm?id=1582723
http://graphlab.org/powergraph-presented-at-osdi/
http://grafia.cs.ucsb.edu/sedge/
http://code.google.com/p/signal-collect/
http://research.microsoft.com/en-us/projects/trinity/
http://www.boost.org/doc/libs/1_51_0/libs/graph_parallel/doc/html/index.html
http://thegraphsblog.wordpress.com/the-graph-blog/mizan/
http://graphbase.net/JavaAPIHelp.html#BoundsLanguage
http://blueprints.tinkerpop.com
http://www.tinkerpop.com/
https://github.com/Vanaheimr/Blueprints.NET
http://bulbflow.com
http://docs.neo4j.org/chunked/snapshot/cypher-query-lang.html
http://gremlin.tinkerpop.com/
http://hg.readify.net/neo4jclient
https://github.com/maxdemarzi/neography/
https://github.com/jadell/neo4jphp/wiki
https://github.com/thingdom/node-neo4j
http://github.com/pangloss/pacer
http://pipes.tinkerpop.com
http://pypi.python.org/pypi/pyblueprints/0.1
http://code.google.com/p/pygr/
http://rexster.tinkerpop.com
http://www.w3.org/wiki/SPASQL
http://www.springsource.org/spring-data/neo4j
http://www.springsource.org/spring-data
https://github.com/ahzf/Styx
https://github.com/StartTheShift/thunderdome
http://www.slideshare.net/ahzf/nosql-frankfurt-2010-the-graphdb-landscape-and-sones
http://www.slideshare.net/ahzf/nosql-frankfurt-2010-the-graphdb-landscape-and-sones
http://highscalability.com/paper-graph-databases-and-future-large-scale-knowledge-management
http://highscalability.com/paper-graph-databases-and-future-large-scale-knowledge-management
http://techportal.ibuildings.com/2009/09/07/graphs-in-the-database-sql-meets-social-networks/
http://techportal.ibuildings.com/2009/09/07/graphs-in-the-database-sql-meets-social-networks/
http://blog.neo4j.org/2009/09/social-networks-in-database-using-graph.html
http://blog.neo4j.org/2009/09/social-networks-in-database-using-graph.html
http://netdb09.cis.upenn.edu/netdb09papers/netdb09-final3.pdf
http://netdb09.cis.upenn.edu/netdb09papers/netdb09-final3.pdf
http://googleresearch.blogspot.com/2009/06/large-scale-graph-computing-at-google.html
http://googleresearch.blogspot.com/2009/06/large-scale-graph-computing-at-google.html
http://www.computerworld.com/s/article/9135086/No_to_SQL_Anti_database_movement_gains_steam_
http://www.computerworld.com/s/article/9135086/No_to_SQL_Anti_database_movement_gains_steam_

Graph database 226

• Renzo Angles, Claudio Gutierrez. Survey of graph database models (http:/ / portal. acm. org/ citation.
cfm?id=1322433). ACM Computing Surveys, Feb. 2008.

• InfoGrid (http:/ / infogrid. org/) - an open-source application platform including a graph database
• Rodriguez, M.A., Neubauer, P, The Graph Traversal Pattern (http:/ / arxiv. org/ abs/ 1004. 1001) article.
• Optimizing Schema-Last Tuple-Store Queries in Graphd (http:/ / portal. acm. org/ citation. cfm?id=1807283)

SIGMOD 2010

NoSQL
A NoSQL database provides a mechanism for storage and retrieval of data that employs less constrained consistency
models than traditional relational databases. Motivations for this approach include simplicity of design, horizontal
scaling and finer control over availability. NoSQL databases are often highly optimized key–value stores intended
for simple retrieval and appending operations, with the goal being significant performance benefits in terms of
latency and throughput. NoSQL databases are finding significant and growing industry use in big data and real-time
web applications. NoSQL systems are also referred to as "Not only SQL" to emphasize that they do in fact allow
SQL-like query languages to be used.

History
Carlo Strozzi used the term NoSQL in 1998 to name his lightweight, open-source relational database that did not
expose the standard SQL interface. Strozzi suggests that, as the current NoSQL movement "departs from the
relational model altogether; it should therefore have been called more appropriately 'NoREL'.
Eric Evans (then a Rackspace employee) reintroduced the term NoSQL in early 2009 when Johan Oskarsson of
Last.fm wanted to organize an event to discuss open-source distributed databases. The name attempted to label the
emergence of a growing number of non-relational, distributed data stores that often did not attempt to provide
atomicity, consistency, isolation and durability guarantees that are key attributes of classic relational database
systems.

Taxonomy
There have been various approaches to classify NoSQL databases, each with different categories and subcategories.
Because of the variety of approaches and overlaps it is difficult to get and maintain an overview of non-relational
databases. Nevertheless, the basic classification that most would agree on is based on data model. A few of these and
their prototypes are:
• Column: HBase, Accumulo
• Document: MongoDB, Couchbase
• Key-value : Dynamo, Riak, Redis, Cache, Project Voldemort
• Graph: Neo4J, Allegro, Virtuoso

Classification based on data model
Stephen Yen in his blog post "NoSQL is a Horseless Carriage" suggests the following:[1]

http://portal.acm.org/citation.cfm?id=1322433
http://portal.acm.org/citation.cfm?id=1322433
http://infogrid.org/
http://arxiv.org/abs/1004.1001
http://portal.acm.org/citation.cfm?id=1807283
http://en.wikipedia.org/w/index.php?title=Data_storage
http://en.wikipedia.org/w/index.php?title=Data_retrieval
http://en.wikipedia.org/w/index.php?title=Consistency_model
http://en.wikipedia.org/w/index.php?title=Consistency_model
http://en.wikipedia.org/w/index.php?title=Horizontal_scaling%23Horizontal_and_vertical_scaling
http://en.wikipedia.org/w/index.php?title=Horizontal_scaling%23Horizontal_and_vertical_scaling
http://en.wikipedia.org/w/index.php?title=Throughput
http://en.wikipedia.org/w/index.php?title=Big_data
http://en.wikipedia.org/w/index.php?title=Real-time_web
http://en.wikipedia.org/w/index.php?title=Real-time_web
http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=Strozzi_NoSQL_%28RDBMS%29
http://en.wikipedia.org/w/index.php?title=Rackspace
http://en.wikipedia.org/w/index.php?title=Last.fm
http://en.wikipedia.org/w/index.php?title=HBase
http://en.wikipedia.org/w/index.php?title=Accumulo
http://en.wikipedia.org/w/index.php?title=MongoDB
http://en.wikipedia.org/w/index.php?title=Couchbase
http://en.wikipedia.org/w/index.php?title=Dynamo_%28storage_system%29
http://en.wikipedia.org/w/index.php?title=Riak
http://en.wikipedia.org/w/index.php?title=Redis
http://en.wikipedia.org/w/index.php?title=MemcacheDB
http://en.wikipedia.org/w/index.php?title=Project_Voldemort
http://en.wikipedia.org/w/index.php?title=Neo4J
http://en.wikipedia.org/w/index.php?title=AllegroGraph
http://en.wikipedia.org/w/index.php?title=Virtuoso_Universal_Server

NoSQL 227

Term Matching Database

KV Store Keyspace, Flare, SchemaFree, RAMCloud, Oracle NoSQL Database (OnDB)

KV Store - Eventually
consistent

Dynamo, Voldemort, Dynomite, SubRecord, Mo8onDb, DovetailDB

KV Store - Hierarchical GT.m, Cache

KV Store - Ordered TokyoTyrant, Lightcloud, NMDB, Luxio, MemcacheDB, Actord

KV Cache Memcached, Repcached, Coherence, Hazelcast, Infinispan, EXtremeScale, JBossCache, Velocity, Terracoqua

Tuple Store Gigaspaces, Coord, Apache River

Object Database ZopeDB, DB40, Shoal

Document Store CouchDB, Cloudant, Couchbase, MongoDB, Jackrabbit, XML-Databases, ThruDB, CloudKit, Prsevere,
Riak-Basho, Scalaris

Wide Columnar Store BigTable, HBase, Apache Cassandra, Hypertable, KAI, OpenNeptune, Qbase, KDI

Classification based on feature
Ben Scofield categorized NoSQL databases based on nonfunctional categories (“(il)ities“) plus a rating of their
feature coverage: [citation needed]

Data Model Performance Scalability Flexibility Complexity Functionality

Key–value Stores high high high none variable (none)

Column Store high high moderate low minimal

Document Store high variable (high) high low variable (low)

Graph Database variable variable high high graph theory

Relational Database variable variable low moderate relational algebra.

Examples

Document store
The central concept of a document store is the notion of a "document". While each document-oriented database
implementation differs on the details of this definition, in general, they all assume that documents encapsulate and
encode data (or information) in some standard formats or encodings. Encodings in use include XML, YAML, and
JSON as well as binary forms like BSON, PDF and Microsoft Office documents (MS Word, Excel, and so on).
Different implementations offer different ways of organizing and/or grouping documents:
•• Collections
•• Tags
•• Non-visible Metadata
•• Directory hierarchies
Compared to relational databases, for example, collections could be considered as tables as well as documents could
be considered as records. But they are different: every record in a table has the same sequence of fields, while
documents in a collection may have fields that are completely different.
Documents are addressed in the database via a unique key that represents that document. One of the other defining
characteristics of a document-oriented database is that, beyond the simple key-document (or key–value) lookup that
you can use to retrieve a document, the database will offer an API or query language that will allow retrieval of

http://en.wikipedia.org/w/index.php?title=Voldemort_%28distributed_data_store%29
http://en.wikipedia.org/w/index.php?title=Memcached
http://en.wikipedia.org/w/index.php?title=Hazelcast
http://en.wikipedia.org/w/index.php?title=Apache_Cassandra
http://en.wikipedia.org/w/index.php?title=Hypertable
http://en.wikipedia.org/wiki/Citation_needed
http://en.wikipedia.org/w/index.php?title=YAML
http://en.wikipedia.org/w/index.php?title=JSON
http://en.wikipedia.org/w/index.php?title=BSON

NoSQL 228

documents based on their contents. Some NoSQL document stores offer an alternative way to retrieve information
using MapReduce techniques, in CouchDB the usage of MapReduce is mandatory if you want to retrieve documents
based on the contents, this is called "Views" and it's an indexed collection with the results of the MapReduce
algorithms.

Name Language Notes

BaseX Java, XQuery XML database

Cloudant Erlang, Java, Scala, C JSON store (online service)

Clusterpoint C++ XML, geared for Full text search

Couchbase Server Erlang, C, C++ Support for JSON and binary documents

Apache CouchDB Erlang JSON database

djondb[2][3][4] C++ JSON, ACID Document Store

ElasticSearch Java JSON, Search engine

eXist Java, XQuery XML database

Jackrabbit Java Java Content Repository implementation

IBM Lotus Notes and Lotus Domino LotusScript, Java, IBM X Pages, others MultiValue

MarkLogic Server XQuery, Java, REST XML database with support for JSON, text, and binaries

MongoDB C++, C#, Go BSON store (binary format JSON)

Oracle NoSQL Database Java, C

OrientDB Java JSON, SQL support

CoreFoundation Property list C, C++, Objective-C JSON, XML, binary

Sedna XQuery, C++ XML database

SimpleDB Erlang online service

TokuMX C++, C#, Go MongoDB with Fractal Tree indexing

OpenLink Virtuoso C++, C#, Java, SPARQL middleware and database engine hybrid

Graph
This kind of database is designed for data whose relations are well represented as a graph (elements interconnected
with an undetermined number of relations between them). The kind of data could be social relations, public transport
links, road maps or network topologies, for example.

Name Language Notes

AllegroGraph SPARQL RDF GraphStore

IBM DB2 SPARQL RDF GraphStore added in DB2 10

DEX Java, C++, .NET High-performance graph database

FlockDB Scala

InfiniteGraph Java High-performance, scalable, distributed graph database

Neo4j Java

OpenLink Virtuoso C++, C#, Java, SPARQL middleware and database engine hybrid

OrientDB Java

Sones GraphDB C#

http://en.wikipedia.org/w/index.php?title=MapReduce
http://en.wikipedia.org/w/index.php?title=CouchDB
http://en.wikipedia.org/w/index.php?title=BaseX
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=XQuery
http://en.wikipedia.org/w/index.php?title=XML_database
http://en.wikipedia.org/w/index.php?title=Cloudant
http://en.wikipedia.org/w/index.php?title=Erlang_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Scala_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=C_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=JSON
http://en.wikipedia.org/w/index.php?title=Clusterpoint
http://en.wikipedia.org/w/index.php?title=C%2B%2B
http://en.wikipedia.org/w/index.php?title=Full_text_search
http://en.wikipedia.org/w/index.php?title=Couchbase_Server
http://en.wikipedia.org/w/index.php?title=Erlang_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=C_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=C%2B%2B
http://en.wikipedia.org/w/index.php?title=JSON
http://en.wikipedia.org/w/index.php?title=CouchDB
http://en.wikipedia.org/w/index.php?title=Erlang_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=JSON
http://en.wikipedia.org/w/index.php?title=C%2B%2B
http://en.wikipedia.org/w/index.php?title=JSON
http://en.wikipedia.org/w/index.php?title=ElasticSearch
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=JSON
http://en.wikipedia.org/w/index.php?title=EXist
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=XQuery
http://en.wikipedia.org/w/index.php?title=XML_database
http://en.wikipedia.org/w/index.php?title=Apache_Jackrabbit
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Java_Content_Repository
http://en.wikipedia.org/w/index.php?title=IBM_Lotus_Notes
http://en.wikipedia.org/w/index.php?title=IBM_Lotus_Domino
http://en.wikipedia.org/w/index.php?title=LotusScript
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=MultiValue
http://en.wikipedia.org/w/index.php?title=MarkLogic_Server
http://en.wikipedia.org/w/index.php?title=XQuery
http://en.wikipedia.org/w/index.php?title=Java
http://en.wikipedia.org/w/index.php?title=REST
http://en.wikipedia.org/w/index.php?title=XML_database
http://en.wikipedia.org/w/index.php?title=JSON
http://en.wikipedia.org/w/index.php?title=MongoDB
http://en.wikipedia.org/w/index.php?title=C%2B%2B
http://en.wikipedia.org/w/index.php?title=C_Sharp_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Go_%28Programming_language%29
http://en.wikipedia.org/w/index.php?title=BSON
http://en.wikipedia.org/w/index.php?title=JSON
http://en.wikipedia.org/w/index.php?title=Oracle_NoSQL_Database
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=C_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=OrientDB
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=JSON
http://en.wikipedia.org/w/index.php?title=CoreFoundation
http://en.wikipedia.org/w/index.php?title=Property_list
http://en.wikipedia.org/w/index.php?title=C_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=C%2B%2B
http://en.wikipedia.org/w/index.php?title=Objective-C
http://en.wikipedia.org/w/index.php?title=JSON
http://en.wikipedia.org/w/index.php?title=XML
http://en.wikipedia.org/w/index.php?title=Sedna_%28database%29
http://en.wikipedia.org/w/index.php?title=XQuery
http://en.wikipedia.org/w/index.php?title=C%2B%2B
http://en.wikipedia.org/w/index.php?title=XML_database
http://en.wikipedia.org/w/index.php?title=SimpleDB
http://en.wikipedia.org/w/index.php?title=Erlang_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=TokuMX
http://en.wikipedia.org/w/index.php?title=C%2B%2B
http://en.wikipedia.org/w/index.php?title=C_Sharp_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Go_%28Programming_language%29
http://en.wikipedia.org/w/index.php?title=Virtuoso_Universal_Server
http://en.wikipedia.org/w/index.php?title=C%2B%2B
http://en.wikipedia.org/w/index.php?title=C_Sharp_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=SPARQL
http://en.wikipedia.org/w/index.php?title=Middleware
http://en.wikipedia.org/w/index.php?title=Database_engine
http://en.wikipedia.org/w/index.php?title=AllegroGraph
http://en.wikipedia.org/w/index.php?title=SPARQL
http://en.wikipedia.org/w/index.php?title=Resource_Description_Framework
http://en.wikipedia.org/w/index.php?title=IBM_DB2
http://en.wikipedia.org/w/index.php?title=SPARQL
http://en.wikipedia.org/w/index.php?title=Resource_Description_Framework
http://en.wikipedia.org/w/index.php?title=DEX_%28Graph_database%29
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=C%2B%2B
http://en.wikipedia.org/w/index.php?title=.NET_Framework
http://en.wikipedia.org/w/index.php?title=FlockDB
http://en.wikipedia.org/w/index.php?title=Scala_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=InfiniteGraph
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Neo4j
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Virtuoso_Universal_Server
http://en.wikipedia.org/w/index.php?title=C%2B%2B
http://en.wikipedia.org/w/index.php?title=C_Sharp_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=SPARQL
http://en.wikipedia.org/w/index.php?title=Middleware
http://en.wikipedia.org/w/index.php?title=Database_engine
http://en.wikipedia.org/w/index.php?title=OrientDB
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Sones_GraphDB
http://en.wikipedia.org/w/index.php?title=C_Sharp_%28programming_language%29

NoSQL 229

Sqrrl Enterprise Java Distributed, real-time graph database featuring cell-level security

OWLIM Java, SPARQL 1.1 RDF graph store with reasoning

VelocityGraph [5] C# Fully Tinkerpop Blueprints [6] compliant. Scalable hybrid object database and graph database

Key–value stores
Key–value stores allow the application to store its data in a schema-less way. The data could be stored in a datatype
of a programming language or an object. Because of this, there is no need for a fixed data model. The following
types exist:

KV - eventually consistent

•• Apache Cassandra
•• Dynamo
•• Hibari
•• OpenLink Virtuoso
•• Project Voldemort
•• Riak

KV - hierarchical

•• GT.M
•• InterSystems Caché

KV - cache in RAM

•• memcached
•• OpenLink Virtuoso
•• Hazelcast
•• Oracle Coherence

KV - solid state or rotating disk

•• Aerospike
•• BigTable
•• CDB
•• Couchbase Server
•• Keyspace
•• LevelDB
• MemcacheDB (using Berkeley DB)
•• MongoDB
•• OpenLink Virtuoso
•• phpFastCache
•• Tarantool
•• Tokyo Cabinet
•• Tuple space
•• Oracle NoSQL Database
•• IBM WebSphere DataPower XC10 Appliance

http://en.wikipedia.org/w/index.php?title=Sqrrl
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Ontotext
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=SPARQL
http://en.wikipedia.org/w/index.php?title=Resource_Description_Framework
https://github.com/VelocityDB/VelocityGraph
http://en.wikipedia.org/w/index.php?title=C_Sharp_%28programming_language%29
https://github.com/Loupi/Frontenac
http://en.wikipedia.org/w/index.php?title=Object_database
http://en.wikipedia.org/w/index.php?title=Apache_Cassandra
http://en.wikipedia.org/w/index.php?title=Dynamo_%28storage_system%29
http://en.wikipedia.org/w/index.php?title=Hibari_%28database%29
http://en.wikipedia.org/w/index.php?title=Virtuoso_Universal_Server
http://en.wikipedia.org/w/index.php?title=Project_Voldemort
http://en.wikipedia.org/w/index.php?title=Riak
http://en.wikipedia.org/w/index.php?title=GT.M
http://en.wikipedia.org/w/index.php?title=InterSystems_Cach%C3%A9
http://en.wikipedia.org/w/index.php?title=Memcached
http://en.wikipedia.org/w/index.php?title=Virtuoso_Universal_Server
http://en.wikipedia.org/w/index.php?title=Hazelcast
http://en.wikipedia.org/w/index.php?title=Oracle_Coherence
http://en.wikipedia.org/w/index.php?title=Aerospike_database
http://en.wikipedia.org/w/index.php?title=BigTable
http://en.wikipedia.org/w/index.php?title=Cdb_%28software%29
http://en.wikipedia.org/w/index.php?title=Couchbase_Server
http://en.wikipedia.org/w/index.php?title=Keyspace_%28distributed_data_store%29
http://en.wikipedia.org/w/index.php?title=LevelDB
http://en.wikipedia.org/w/index.php?title=MemcacheDB
http://en.wikipedia.org/w/index.php?title=MongoDB
http://en.wikipedia.org/w/index.php?title=Virtuoso_Universal_Server
http://en.wikipedia.org/w/index.php?title=PhpFastCache
http://en.wikipedia.org/w/index.php?title=Tarantool
http://en.wikipedia.org/w/index.php?title=Tokyo_Cabinet
http://en.wikipedia.org/w/index.php?title=Tuple_space
http://en.wikipedia.org/w/index.php?title=Oracle_NoSQL_Database
http://en.wikipedia.org/w/index.php?title=IBM_WebSphere_DataPower_XC10_Appliance

NoSQL 230

KV - ordered

•• Berkeley DB
•• FoundationDB
•• IBM Informix C-ISAM
•• InfinityDB
•• MemcacheDB
•• NDBM

Object database
•• db4o
•• GemStone/S
•• InterSystems Caché
•• JADE
•• NeoDatis ODB
•• ObjectDB
•• Objectivity/DB
•• ObjectStore
•• ODABA
•• OpenLink Virtuoso
•• Versant Object Database
•• WakandaDB
•• ZODB

Tabular
•• Apache Accumulo
•• BigTable
•• Apache Hbase
•• Hypertable
•• Mnesia
•• OpenLink Virtuoso

Tuple store
•• Apache River
•• OpenLink Virtuoso
•• Tarantool

Triple/Quad Store (RDF) database
•• Meronymy SPARQL Database Server
•• Virtuoso Universal Server
•• Ontotext-OWLIM
•• Apache JENA
•• Oracle NoSQL database

http://en.wikipedia.org/w/index.php?title=Berkeley_DB
http://en.wikipedia.org/w/index.php?title=FoundationDB
http://en.wikipedia.org/w/index.php?title=IBM_Informix_C-ISAM
http://en.wikipedia.org/w/index.php?title=InfinityDB
http://en.wikipedia.org/w/index.php?title=MemcacheDB
http://en.wikipedia.org/w/index.php?title=NDBM
http://en.wikipedia.org/w/index.php?title=Db4o
http://en.wikipedia.org/w/index.php?title=Gemstone_%28database%29
http://en.wikipedia.org/w/index.php?title=InterSystems_Cach%C3%A9
http://en.wikipedia.org/w/index.php?title=JADE_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=NeoDatis_ODB
http://en.wikipedia.org/w/index.php?title=ObjectDB
http://en.wikipedia.org/w/index.php?title=Objectivity/DB
http://en.wikipedia.org/w/index.php?title=ObjectStore
http://en.wikipedia.org/w/index.php?title=Odaba
http://en.wikipedia.org/w/index.php?title=Virtuoso_Universal_Server
http://en.wikipedia.org/w/index.php?title=Versant_Object_Database
http://en.wikipedia.org/w/index.php?title=Wakanda_%28software%29
http://en.wikipedia.org/w/index.php?title=ZODB
http://en.wikipedia.org/w/index.php?title=Apache_Accumulo
http://en.wikipedia.org/w/index.php?title=BigTable
http://en.wikipedia.org/w/index.php?title=HBase
http://en.wikipedia.org/w/index.php?title=Hypertable
http://en.wikipedia.org/w/index.php?title=Mnesia
http://en.wikipedia.org/w/index.php?title=Virtuoso_Universal_Server
http://en.wikipedia.org/w/index.php?title=Apache_River
http://en.wikipedia.org/w/index.php?title=Virtuoso_Universal_Server
http://en.wikipedia.org/w/index.php?title=Tarantool
http://en.wikipedia.org/w/index.php?title=Meronymy_SPARQL_Database_Server
http://en.wikipedia.org/w/index.php?title=Virtuoso_Universal_Server
http://en.wikipedia.org/w/index.php?title=Ontotext
http://en.wikipedia.org/w/index.php?title=Jena_%28framework%29
http://en.wikipedia.org/w/index.php?title=Oracle_NoSQL_Database

NoSQL 231

Hosted
•• Freebase
•• OpenLink Virtuoso
•• Datastore on Google Appengine
•• Amazon DynamoDB
•• Cloudant Data Layer (CouchDB)

Multivalue databases
• Northgate Information Solutions Reality, the original Pick/MV Database
• Extensible Storage Engine (ESE/NT)
•• OpenQM
• Revelation Software's OpenInsight
•• Rocket U2
• D3 Pick database
•• InterSystems Caché
•• InfinityDB

Cell database
• [] Boardwalk

References
[1] A Yes for a NoSQL Taxonomy (http:/ / highscalability. com/ blog/ 2009/ 11/ 5/ a-yes-for-a-nosql-taxonomy. html). High Scalability

(2009-11-05). Retrieved on 2013-09-18.
[2] The enterprise class NoSQL database (http:/ / djondb. com). djondb. Retrieved on 2013-09-18.
[3] http:/ / tinman. cs. gsu. edu/ ~raj/ 8711/ sp13/ djondb/ Report. pdf
[4] Undefined Blog: Meeting with DjonDB (http:/ / undefvoid. blogspot. com/ 2013/ 03/ meeting-with-djondb. html). Undefvoid.blogspot.com.

Retrieved on 2013-09-18.
[5] https:/ / github. com/ VelocityDB/ VelocityGraph
[6] https:/ / github. com/ Loupi/ Frontenac

Further reading
• Pramod Sadalage and Martin Fowler (2012). NoSQL Distilled: A Brief Guide to the Emerging World of Polyglot

Persistence. Addison-Wesley. ISBN 0-321-82662-0.
• Christof Strauch (2012). "NoSQL Databases" (http:/ / www. christof-strauch. de/ nosqldbs. pdf).
• Moniruzzaman AB, Hossain SA (2013). "NoSQL Database: New Era of Databases for Big data Analytics -

Classification, Characteristics and Comparison" (http:/ / arxiv. org/ abs/ 1307. 0191).
• Kai Orend (2013). Analysis and Classification of NoSQL Databases and Evaluation of their Ability to Replace an

Object-relational Persistence Layer (http:/ / citeseerx. ist. psu. edu/ viewdoc/ download?doi=10. 1. 1. 184. 483&
rep=rep1& type=pdf).

• Ganesh Krishnan, Sarang Kulkarni, Dharmesh Kirit Dadbhawala. "Method and system for versioned sharing,
consolidating and reporting information" (https:/ / www. google. com/ patents/ US7383272?pg=PA1&
dq=ganesh+ krishnan& hl=en& sa=X).

http://en.wikipedia.org/w/index.php?title=Freebase_%28database%29
http://en.wikipedia.org/w/index.php?title=Virtuoso_Universal_Server
http://en.wikipedia.org/w/index.php?title=Appengine
http://en.wikipedia.org/w/index.php?title=Amazon_DynamoDB
http://en.wikipedia.org/w/index.php?title=Cloudant
http://en.wikipedia.org/w/index.php?title=Northgate_Information_Solutions
http://en.wikipedia.org/w/index.php?title=Extensible_Storage_Engine
http://en.wikipedia.org/w/index.php?title=OpenQM
http://en.wikipedia.org/w/index.php?title=OpenInsight
http://en.wikipedia.org/w/index.php?title=Rocket_U2
http://en.wikipedia.org/w/index.php?title=Pick_database
http://en.wikipedia.org/w/index.php?title=InterSystems_Cach%C3%A9
http://en.wikipedia.org/w/index.php?title=InfinityDB
http://highscalability.com/blog/2009/11/5/a-yes-for-a-nosql-taxonomy.html
http://djondb.com
http://tinman.cs.gsu.edu/~raj/8711/sp13/djondb/Report.pdf
http://undefvoid.blogspot.com/2013/03/meeting-with-djondb.html
https://github.com/VelocityDB/VelocityGraph
https://github.com/Loupi/Frontenac
http://en.wikipedia.org/w/index.php?title=Martin_Fowler
http://en.wikipedia.org/w/index.php?title=International_Standard_Book_Number
http://en.wikipedia.org/w/index.php?title=Special:BookSources/0-321-82662-0
http://www.christof-strauch.de/nosqldbs.pdf
http://arxiv.org/abs/1307.0191
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.184.483&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.184.483&rep=rep1&type=pdf
https://www.google.com/patents/US7383272?pg=PA1&dq=ganesh+krishnan&hl=en&sa=X
https://www.google.com/patents/US7383272?pg=PA1&dq=ganesh+krishnan&hl=en&sa=X

NoSQL 232

External links
• Christoph Strauch. "NoSQL whitepaper" (http:/ / www. christof-strauch. de/ nosqldbs. pdf). Hochschule der

Medien, Stuttgart.
• Martin Fowler. "NoSQL Guide" (http:/ / martinfowler. com/ nosql. html).
• Stefan Edlich. "NoSQL database List" (http:/ / nosql-database. org/).
• Peter Neubauer (2010). "Graph Databases, NOSQL and Neo4j" (http:/ / www. infoq. com/ articles/

graph-nosql-neo4j).
• Sergey Bushik (2012). "A vendor-independent comparison of NoSQL databases: Cassandra, HBase, MongoDB,

Riak" (http:/ / www. networkworld. com/ news/ tech/ 2012/ 102212-nosql-263595. html). NetworkWorld.

NewSQL
NewSQL is a class of modern relational database management systems that seek to provide the same scalable
performance of NoSQL systems for online transaction processing (read-write) workloads while still maintaining the
ACID guarantees of a traditional database system.

History
The term was first used by 451 Group analyst Matthew Aslett in a 2011 research paper discussing the rise of new
database systems as challengers to established vendors. Many enterprise systems that handle high-profile data (e.g.,
financial and order processing systems) also need to be able to scale but are unable to use NoSQL solutions because
they cannot give up strong transactional and consistency requirements. The only options previously available for
these organizations were to either purchase a more powerful single-node machine or develop custom middleware
that distributes queries over traditional DBMS nodes. Both approaches are prohibitively expensive and thus are not
an option for many. Thus, in this paper, Aslett discusses how NewSQL upstarts are poised to challenge the
supremacy of commercial vendors, in particular Oracle.

Systems
Although NewSQL systems vary greatly in their internal architectures, the two distinguishing features common
amongst them is that they all support the relational data model and use SQL as their primary interface. One of the
first known NewSQL systems is the H-Store parallel database system.
NewSQL systems can be loosely grouped into three categories:

New architectures
The first type of NewSQL systems are completely new database platforms. These are designed to operate in a
distributed cluster of shared-nothing nodes, in which each node owns a subset of the data. Though many of the new
databases have taken different design approaches, there are two primary categories evolving. The first type of system
sends the execution of transactions and queries to the nodes that contain the needed data. SQL queries are split into
query fragments and sent to the nodes that own the data. These databases are able to scale linearly as additional
nodes are added.
• General-purpose databases — These maintain the full functionality of traditional databases, handling all types of

queries. These databases are often written from scratch with a distributed architecture in mind, and include
components such as distributed concurrency control, flow control, and distributed query processing. This includes
Google Spanner, Clustrix, NuoDB and TransLattice.

http://www.christof-strauch.de/nosqldbs.pdf
http://en.wikipedia.org/w/index.php?title=Martin_Fowler
http://martinfowler.com/nosql.html
http://nosql-database.org/
http://www.infoq.com/articles/graph-nosql-neo4j
http://www.infoq.com/articles/graph-nosql-neo4j
http://www.networkworld.com/news/tech/2012/102212-nosql-263595.html
http://en.wikipedia.org/w/index.php?title=Database_management_system
http://en.wikipedia.org/w/index.php?title=Online_transaction_processing
http://en.wikipedia.org/w/index.php?title=Oracle_Database
http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=H-Store
http://en.wikipedia.org/w/index.php?title=Parallel_database
http://en.wikipedia.org/w/index.php?title=Shared_nothing_architecture
http://en.wikipedia.org/w/index.php?title=Google_Spanner
http://en.wikipedia.org/w/index.php?title=Clustrix
http://en.wikipedia.org/w/index.php?title=NuoDB
http://en.wikipedia.org/w/index.php?title=TransLattice

NewSQL 233

• In-memory databases — The applications targeted by these NewSQL systems are characterized as having a large
number of transactions that (1) are short-lived (i.e., no user stalls), (2) touch a small subset of data using index
lookups (i.e., no full table scans or large distributed joins), and (3) are repetitive (i.e., executing the same queries
with different inputs). These NewSQL systems achieve high performance and scalability by eschewing much of
the legacy architecture of the original System R design, such as heavyweight recovery or concurrency control
algorithms. Two example systems in this category are VoltDB and GoPivotal's SQLFire.

MySQL Engines
The second category are highly optimized storage engines for SQL. These systems provide the same programming
interface as MySQL, but scale better than built-in engines, such as InnoDB. Examples of these new storage engines
include TokuDB, MemSQL, and Akiban.

Transparent sharding
These systems provide a sharding middleware layer to automatically split databases across multiple nodes. Examples
of this type of system includes dbShards, Scalearc, ScaleBase and MySQL Cluster.

References

http://en.wikipedia.org/w/index.php?title=In-memory_database
http://en.wikipedia.org/w/index.php?title=IBM_System_R
http://en.wikipedia.org/w/index.php?title=Algorithms_for_Recovery_and_Isolation_Exploiting_Semantics
http://en.wikipedia.org/w/index.php?title=VoltDB
http://en.wikipedia.org/w/index.php?title=GoPivotal
http://en.wikipedia.org/w/index.php?title=Database_engine
http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=InnoDB
http://en.wikipedia.org/w/index.php?title=TokuDB
http://en.wikipedia.org/w/index.php?title=MemSQL
http://en.wikipedia.org/w/index.php?title=Akiban
http://en.wikipedia.org/w/index.php?title=Shard_%28database_architecture%29
http://en.wikipedia.org/w/index.php?title=Middleware
http://en.wikipedia.org/w/index.php?title=DbShards
http://en.wikipedia.org/w/index.php?title=Scalearc
http://en.wikipedia.org/w/index.php?title=ScaleBase
http://en.wikipedia.org/w/index.php?title=MySQL_Cluster

Article Sources and Contributors 234

Article Sources and Contributors
Database Source: http://en.wikipedia.org/w/index.php?oldid=577356344 Contributors: *drew, 05winsjp, 069952497a, 10285658sdsaa, 10metreh, 110808028 amol, 16@r,
2001:558:6033:AE:4A:74EE:6356:A9B8, 206.31.111.xxx, 25or6to4, 28421u2232nfenfcenc, 28nebraska, 2D, 4twenty42o, 65.10.163.xxx, APH, Aaron Brenneman, Abhikumar1995,
Addihockey10, Aditya gopal3, Admfirepanther, Adrian J. Hunter, Aepanico, Afluegel, Ahodgkinson, Ahoerstemeier, Ahy1, Aitias, Aj.robin, Akamad, Al Wiseman, Alain Amiouni, Alansohn,
Alasdair, Ale jrb, Allan McInnes, Allecher, Alpha Quadrant (alt), Alphax, Alzpp, Amaraiel, Amaury, Amd628, Anders Torlind, Andonic, Andre Engels, Andrewferrier, AndriuZ, Angela,
Anikingos, AnjaliSinha, AnmaFinotera, Ann Stouter, AnonUser, Anonymous Dissident, Antandrus, Antrax, Apparition11, Arbitrarily0, Arcann, Arctic Kangaroo, Argon233, Arjun01,
Armen1304, ArnoLagrange, Arthena, Arthur Rubin, Arved, ArwinJ, AsceticRose, Asyndeton, AtheWeatherman, Atkinsdc, Autumn Wind, AutumnSnow, Avenged Eightfold, AwamerT, Ayecee,
AzaToth, Baa, Babbling.Brook, Barneca, Bbatsell, Bbb23, Bblank, Bcartolo, Bcontins, Beeblebrox, Beetstra, Beland, Ben Ben, Ben-Zin, Benni39, BentlijDB, Bentogoa, Bernd in Japan, Beta M,
Betterusername, Bharath357, BigPimpinBrah, Bjcubsfan, Bkhouser, Blanchardb, BlindEagle, Blood Red Sandman, BluCreator, Bluemask, Bluerocket, BobStepno, Bobblewik, Bogdangiusca,
Bogey97, Boing! said Zebedee, Boli1107, Bongwarrior, Bowlderizer, Branzman, Brick Thrower, BrokenSphere, BryanG, Btilm, Bubba hotep, Bunnyhop11, Burner0718, Buzzimu, Bwhynot14,
C12H22O11, CIreland, COMPFUNK2, CableCat, Calabe1992, Call me Bubba, Callanecc, Calliopejen1, Caltas, Calutuigor, Cambalachero, Cambapp, Cammo33, Camw, Can't sleep, clown will
eat me, CanisRufus, Canterbury Tail, Cantras, Capricorn42, Captain-n00dle, Captain-tucker, Carbonite, CardinalDan, Caster23, CasualVisitor, Cavanagh, Cenarium, CesarB, Cevalsi, Ceyjan,
Chaojoker, Cheolsoo, Chester Markel, Childzy, Chirpy, Chocolateboy, ChorizoLasagna, Chrax, Chris 73, Chris G, ChrisGualtieri, Chrislk02, Chrism, Christophe.billiottet, Chriswiki, Chtuw,
Chuckhoffmann, Chuunen Baka, Clarince63, Clark89, Click23, Closedmouth, Colindolly, Colonies Chris, Cometstyles, Commander Keane, Compfreak7, Comps, Constructive, Conversion script,
Courcelles, Cpereyra, Cpl Syx, Cpuwhiz11, Craftyminion, Craig Stuntz, Crashdoom, Credema, Crucis, Cryptic, Culverin, Cyan, Cybercobra, Cyberjoac, CynicalMe, D. Recorder, DARTH
SIDIOUS 2, DEddy, DFS454, DJ Clayworth, DVD R W, DVdm, DamnRandall, Dan100, Dancayta, Dancter, Danhash, Daniel.Cardenas, DanielCD, Danieljamesscott, Danim, Dart88, Darth
Mike, Darth Panda, Darthvader023, Davewild, David Fuchs, David0811, Dbates1999, Dbfirs, DePiep, Dead3y3, DeadEyeArrow, DeadlyAssassin, Deathlasersonline, Decrease789,
DeirdreGerhardt, Denisarona, DerBorg, DerHexer, Deville, Dgw, Diamondland, DigitalEnthusiast, Discospinster, Djordjes, Djsasso, Dkastner, Dkwebsub, Doc glasgow, Doddsy1993, Dogposter,
Donama, Doniago, Donner60, DougBarry, Dougofborg, Doulos Christos, DragonLord, Dreadstar, Dreamyshade, Drivenapart, Drumroll99, Duyanfang, Dwolt, Dysepsion, E23, Eagleal,
Earlypsychosis, EarthPerson, EastTN, Echartre, Eddiecarter1, Eddiejcarter, Edgar181, Edgarde, Edivorce, Edward, Eeekster, Ejrrjs, ElKevbo, Elwikipedista, Epbr123, Era7bd, Eric Bekins, Eric
Burnett, Ericlaw02, Erikrj, Escape Orbit, Etxrge, EugeneZelenko, EvergreenFir, Everyking, Evildeathmath, Excirial, Exor674, Explicit, Eyesnore, Ezeu, FFGeyer, Fang Aili, FatalError, Favonian,
Feedmecereal, FetchcommsAWB, Feydey, Fieldday-sunday, Filx, Finlay McWalter, Flewis, Flubeca, Fluffernutter, Flyer22, FlyingToaster, Fooker69, Fortdj33, Foxfax555, Fraggle81, Frankman,
Franky21, Franl, Fratrep, Freebiekr, Frsparrow, Fubar Obfusco, Furrykef, Fuzzie, Fæ, G12kid, GDonato, GHe, GLaDOS, Gadfium, Gail, Galzigler, Garyzx, Gburd, Giftlite, Ginsengbomb,
Ginsuloft, Girl2k, Gishac, Glacialfox, GlenPeterson, GnuDoyng, Gogo Dodo, GoingBatty, Gonfus, Gozzy345, Graeme Bartlett, GraemeL, Graham87, GrayFullbuster, GregWPhoto, Gregfitzy,
GregorB, Grim23, Grsmca, Grstain, Gsallis, Gscshoyru, Gwizard, Gzkn, Haakon, Hadal, HaeB, Hamtechperson, Hankhuck, HappyInGeneral, Harej, Hasek is the best, HeliXx, Helixblue,
Helloher, HexaChord, Heymid, Heysim0n, Hotstaff, Hshoemark, Hugsandy, Huntthetroll, Hurricane111, HybridBoy, Hydrogen Iodide, IComputerSaysNo, IElonex!, Iced Kola, Igoldste, Imfargo,
Imnotminkus, Imran, Informatwr, Insineratehymn, Inspector 34, Intgr, IrfanSha, Ironman5247, Isfisk, Itafran2010, ItsZippy, Ixfd64, J.delanoy, JCLately, JForget, JJdaboss, JLaTondre, JMRyan,
Ja 62, JaGa, Jab843, Jabby11, Jack Greenmaven, Jackacon, JamesBWatson, Jan1nad, Jarble, Jasimab, Jasper Deng, Jauerback, Javert, Jaxl, Jay, Jb-adder, Jclemens, Jdlambert, JeffTan,
JeffreyYasskin, Jennavecia, JephapE, Jerome Charles Potts, Jk2q3jrklse, Jmanigold, Jni, JoanneB, Joel7687, Joffeloff, John Vandenberg, John of Reading, Johnuniq, Jojalozzo, Jonathan Webley,
JonathanFreed, Jondel, Jonearles, Jonwynne, Joshnpowell, Joshwa1234567890, Journalist, Jschnur, Jstaniek, JunWan, Jvhertum, Jwoodger, Jwy, KILLERKEA23, Kanonkas, Karlhahn,
Karmafist, Katalaveno, Keenan Pepper, Keilana, Kekekecakes, Kellyk99, Kenny sh, Kevins, KeyStroke, Khazar2, Khoikhoi, Kiand, Kimberly ayoma, Kimera Kat, King of Hearts, Kingius,
Kingpin13, KingsleyIdehen, Kivar2, Kkailas, Knbanker, Koavf, Kocio, Komal.Ar, KoshVorlon, KotetsuKat, Kozmando, Kraftlos, Krashlandon, Kslays, Kukini, Kunaldeo, Kungfuadam, Kuru,
Kushal one, Kvasilev, Kwiki, KyraVixen, Kzzl, L Kensington, LC, Lamp90, LaosLos, Larsinio, Latka, Leaderofearth, Leandrod, LeaveSleaves, LeeHam2007, Leonnicholls07, LessHeard vanU,
Levin, Levin Carsten, Lexo, Lflores92201, Lfstevens, Lguzenda, Lights, LindaEllen, Lingliu07, Lingwitt, Linkspamremover, LittleOldMe, LittleWink, Llyntegid, Lod, Logan, Lotje,
Lovefamosos, Lovelac7, Lowellian, Lradrama, Lsschwar, LuK3, Lucyin, Lugia2453, Luizfsc, Luna Santin, M.badnjki, M4gnum0n, MBisanz, MECiAf., MER-C, MJunkCat, Machdohvah,
Madhava 1947, Magioladitis, Majorly, Makecat, Malvikiran, Mandarax, Manikandan 2030, Mannafredo, Marasmusine, Mark Arsten, Mark Renier, MarkSutton, MartinSpamer, Materialscientist,
Mathewforyou, Mato, Matthewrbowker, Matticus78, Mattisse, Maty18, Maury Markowitz, Max Naylor, Maxferrario, Maxime.Debosschere, Maxmarengo, Mayur, Mazca, Mboverload,
McGeddon, Mdd, Meaghan, Mean as custard, Mediran, Megatronium, Melody Lavender, Melucky2getu, Mentifisto, Menublogger, Mercy11, Methnor, Mhkay, Michael Hardy, Michael Slone,
Microchip08, Mike Dillon, Mike Rosoft, Mike Schwartz, Mike99999, MikeSy, Mikeblas, Mikey180791, MilerWhite, Millermk, Milo99, Mindmatrix, Minimac, Minna Sora no Shita, Mkeranat,
Moazzam chand, Mojo Hand, Moreschi, Morwen, MrNoblet, Mrozlog, Mrt3366, Mspraveen, Mugaliens, Mukherjeeassociates, Mulad, Mumonkan, Mushroom, Mwaci11, Mxn,
N1RK4UDSK714, N25696, NAHID, NSR, Nafclark, Namlemez, Nanshu, NathanBeach, NawlinWiki, NetManage, Netizen, NewEnglandYankee, Ngpd, Nick, Nicoosuna, Niteowlneils, Nk,
Noah Salzman, Noctibus, Noldoaran, Northamerica1000, Northernhenge, Nsaa, Nurg, Ocaasi, Oda Mari, Odavy, Oddbodz, Ohka-, Oho1, Oli Filth, Olinga, OllieFury, OnePt618, OrgasGirl,
Oroso, OverlordQ, PJM, PaePae, Pak21, PappaAvMin, Parzi, PatrikR, Paul August, Paul Drye, Paul E Ester, Paul Foxworthy, Paulinho28, Pcb21, Pdcook, Peashy, Pee Tern, PeeAeMKay, Pengo,
PeregrineAY, Peruvianllama, Pete1248, Peter Karlsen, Peter.C, Pgk, Phantomsteve, Pharaoh of the Wizards, Phearlez, PhilKnight, Philip Trueman, Philippe, Phinicle, Phoenix-wiki, Piano non
troppo, Pillefj, Pingveno, Pinkadelica, Pjoef, Plrk, Pnm, Poeloq, Pol098, Poor Yorick, Poterxu, Praba tuty, Prabash.A, Prari, Prashanthns, Pratyya Ghosh, PrePress, Preet91119, Proofreader77,
Prunesqualer, Psaajid, Psb777, Puchiko, Pvjohnson, Pyfan, Quadell, Qwertykris, Qwyrxian, Qxz, R'n'B, R3miixasim, RIH-V, RadioFan, RadioKirk, Rafaelschp, Railgun, Rakeki, Raspalchima,
Ravinjit, Ray Lightyear, RayGates, RayMetz100, RazorXX8, Rdsmith4, Reaper Eternal, Reatlas, Refactored, Regancy42, Reidh21234, RenamedUser01302013, Rettetast, RexNL, Rhobite, Rich
Farmbrough, Ricky81682, Ringbang, Rishu arora11, Riverraisin, Rj Haseeb, Rjwilmsi, Robert Merkel, Robert Skyhawk, Robocoder, Robth, Rocketrod1960, Rockonomics, Rohitj.iitk, Romanm,
Rotanagol, Rothwellisretarded, Roux, Rursus, Ruud Koot, Ryager, Ryanslater, Ryanslater2, Ryulong, S.K., SAE1962, SDSWIKI, SFK2, SJP, SWAdair, Sae1962, Saiken79, Salvio giuliano, Sam
Barsoom, Sam Korn, SamJohnston, Samir, Sander123, Sandman, Sango123, Sarchand, SarekOfVulcan, Satellizer, SatuSuro, Saturdayswiki, Savh, ScMeGr, Sceptre, Seanust 1, Seaphoto,
SebastianHelm, Serketan, Several Pending, Sewebster, Shadowjams, Shadowseas, Sheeana, Shipmaster, Shirulashem, Siebren, Silly rabbit, Simeon, Simetrical, SimonMorgan, Sintaku, Sir
Nicholas de Mimsy-Porpington, Sissi's bd, Siteobserver, Sjakkalle, Sjc, Skamecrazy123, Skybrian, Slakr, Sleske, SnoFox, Somchai1029, Sonett72, Sonia, Soosed, Sophus Bie, Soumark, SpK,
Spartaz, Spazure, Spdegabrielle, SpikeTorontoRCP, SpuriousQ, Squids and Chips, Srdju001, Srikeit, Ssd, StaticVision, Stdazi, Stephen Gilbert, Stephenb, Stevertigo, Stifle, Stirling Newberry,
Storm Rider, Strike Eagle, Strongsauce, Stuhacking, Sucker666, Sudarevic, Suffusion of Yellow, SuperHamster, Supertouch, Supreme Deliciousness, Supten, SwisterTwister, SymlynX, Sythy2,
Tabletop, Tablizer, TakuyaMurata, TalkyLemon, Tasc, Tazmaniacs, Technopat, Tgeairn, Th1rt3en, Thatperson, The Anome, The Thing That Should Not Be, The Wiki Octopus, The wub,
TheGrimReaper NS, TheNewPhobia, Thedjatclubrock, Thehulkmonster, Theimmaculatechemist, Theodolite, Theory of deadman, Thingg, Think outside the box, Thinktdub, Thomasryno,
ThumbFinger, Thumperward, Tictacsir, Tide rolls, Tim Q. Wells, TimBentley, Title302, TittoAssini, Tobias Bergemann, Tolly4bolly, Tomatronster, Tonydent, Toquinha, Tpbradbury, Treekids,
TrentonLipscomb, Trevor MacInnis, Triwbe, Troels Arvin, Trusilver, Tualha, Tudorol, Tuhl, Turlo Lomon, Turnstep, Twebby, Twelvethirteen, TwistOfCain, TwoTwoHello, Twsx, TyA, Tyler,
UberScienceNerd, Ubiq, Ubiquity, Ugebgroup8, Ulric1313, Ultraexactzz, Uncle Dick, Unyoyega, VNeumann, Vary, Velella, Verajohne, Versus22, Veryprettyfish, Vespristiano, Victor falk,
Vikreykja, Vincent Liu, Vipinhari, Vishnava, Visor, Vivacewwxu, VoxLuna, Vrenator, W mccall, W163, WOSlinker, Waggers, Waveguy, Wavelength, Weetoddid, Welsh, Werdna, Widefox,
Widr, Wifione, Wik, Wiki alf, Wiki tiki tr, Wikidrone, Wikipelli, WikiuserNI, Willking1979, Wimt, Windsok, Winterst, Wipe, Wmahan, Woohookitty, Woseph, Writeread82, Wulfila, Wwmbes,
Wya 7890, Xfact, Xhelllox, Xin0427, Yintan, Yossman007, ZenerV, Zhenqinli, Zipircik, Zippanova, ZooPro, Zro, Zundark, Zzuuzz, Σ, М И Ф, کاشف عقیل, 雷 大 伟, 3114 anonymous edits

Database model Source: http://en.wikipedia.org/w/index.php?oldid=570714755 Contributors: AGK, ARUNKUMAR P.R, AgadaUrbanit, Airplaneman, Alansohn, Amy whattt, AutumnSnow,
Beland, Bill Slawski, CharlesBarouch, Cybercobra, Danim, Decrease789, Dkwebsub, Dwils098, ENeville, Edward, FatalError, J.delanoy, Jabbba, Jbolden1517, JoyMundy, Jwoodger, LaosLos,
Magomaitin, MainFrame, Mark Renier, Materialscientist, Mdd, Mihai-gr, Mindmatrix, Minimac, Minna Sora no Shita, Mr. Vernon, Nn123645, Porterjoh, Razorbliss, Richramos, Roenbaeck, Sun
Creator, Tim1357, Vegaswikian, Wikipelli, Woohookitty, 81 anonymous edits

Database normalization Source: http://en.wikipedia.org/w/index.php?oldid=577707258 Contributors: 1exec1, 4pq1injbok, A3 nm, ARPIT SRIVASTAV, Ahoerstemeier, Akamad, Akhristov,
Alai, Alasdair, Alest, Alexey.kudinkin, Alpha 4615, Amr40, AndrewWTaylor, Antonielly, Anwar saadat, Apapadop, Arakunem, Arashium, Archer3, Arcturus, Arthena, Arthur Schnabel, Ascend,
AstroWiki, AubreyEllenShomo, Autocracy, AutumnSnow, Azhar600-1, BMF81, Babbling.Brook, Bernard François, Bewildebeast, Bgwhite, Billben74, Billpennock, BillyPreset, Black Eagle,
Blade44, Blakewest, Blanchardb, Bloodshedder, Blowdart, BlueNovember, BlueWanderer, Bongwarrior, Boson, Bovineone, BradBeattie, Brick Thrower, BrokenSegue, Bruceshining, Bschmidt,
Bugsbunny1611, BuzCo, CLW, Callavinash1, Can't sleep, clown will eat me, Chairboy, Chrislk02, Citral, Cl22333, CodeNaked, Combatentropy, Conversion script, Creature, Crenner,
Crosbiesmith, DARTH SIDIOUS 2, Damian Yerrick, DanMS, Dancraggs, Danim, Danlev, Datasmid, David Colbourn, DavidConrad, DavidHOzAu, Davidhorman, Dean001, Decrease789,
Demosta, Denisarona, DerHexer, Dfass, Dflock, Discospinster, DistributorScientiae, Doc vogt, DocRuby, Docu, Don Hammond, Doud101, Dqmiller, Dreftymac, Drowne, Dthomsen8, Duke
Ganote, Ed Poor, Edward Z. Yang, Eghanvat, Elcool83, Electricmuffin11, Elwikipedista, EmmetCaulfield, Emperorbma, Emw, Encognito, Enric Naval, Epepke, Eric Burnett, Escape Orbit,
Ethan, Evilyuffie, Ewebxml, Falcon8765, Farquaadhnchmn, Fathergod, FauxFaux, Fieldday-sunday, Fireman biff, Flewellyn, Fluffernutter, Fmjohnson, Fraggle81, Fred Bradstadt, Furrykef,
Gadfium, GateKeeper, Gimboid13, Ginsuloft, Gk5885, Gogo Dodo, Gottabekd, Gregbard, GregorB, Groganus, Gustavb, Guybrush, HMSSolent, Hadal, Hairy Dude, Hanifbbz, Hapsiainen, HbJ,
Hbf, Heracles31, HiDrNick, Hoo man, Hu12, Hydrogen Iodide, Hz.tiang, Ianblanes, IceUnshattered, Imre Fabian, Inquam, Intgr, Jadvinia, Jakew, James086, JamesBWatson, Jamesday,
Jamesjusty, Jan Hidders, Japo, Jarble, Jason Quinn, Javert16, Jdlambert, Jgro, Jjjjjjjjjj, Jklin, Joness59, Joseph Dwayne, Jpatokal, Jpo, Justin W Smith, KAtremer, KathrynLybarger, Keane2007,
Keegan, KevinOwen, KeyStroke, Keyvez, Kgwikipedian, Kingpin13, Klausness, Kushalbiswas777, L Kensington, L'Aquatique, LOL, Larsinio, Lawrence Cohen, Leandrod, Lee J Haywood,
Legless the oaf, Leleutd, Leotohill, Lerdthenerd, Les boys, Lethe, Libcub, Lifeweaver, Linhvn88, LittleOldMe, Longhair, Lssilva, Lujianxiong, Lulu of the Lotus-Eaters, Lumingz, Luna Santin,
M4gnum0n, MER-C, Magantygk, Manavkataria, Mark Renier, Marknew, MarownIOM, MartinHarper, Masterstupid, Materialscientist, Matmota, Matthew 1130, Mckaysalisbury, Metaeducation,
Michael Hardy, Michalis Famelis, Michealt, Microtony, Mike Rosoft, Mikeblas, Mikeo, Mindmatrix, Miss Madeline, Mjhorrell, Mo0, Modeha, Mooredc, Mpd, Mr Stephen, MrDarcy, MrOllie,
Nabav, NawlinWiki, Nick1nildram, NickCT, NoahWolfe, Nocat50, Noisy, Northamerica1000, Nsaa, NubKnacker, Obradovic Goran, Ocrow, OliverMay, Olof nord, Opes, Oxymoron83, Pagh,
Peachey88, Pearle, Perfectblue97, Pete142, Pharaoh of the Wizards, Phil Boswell, Philip Trueman, Pie Man 360, Pinethicket, Plastic rat, Polluxian, Prakicov, ProveIt, Purplepiano, Quarl, RB972,

Article Sources and Contributors 235

RBarryYoung, RadioFan, Railgun, Rathgemz, Rdsmith4, Rdummarf, RealityApologist, Reedy, Regancy42, Reinyday, Remy B, Reofi, RichF, Rjwilmsi, Robert McClenon, Robomaeyhem,
Rockcool19, Rodasmith, Romke, Ronfagin, Rp, Rumplefish, Ruud Koot, Ryulong, Sam Hocevar, Sasha.sheinberg, SchuminWeb, ScottJ, Scwlong, Seaphoto, Sfnhltb, Shadowjams, Shakinglord,
Shawn wiki, Shreyasjoshis, Shyamal, Silpi, Simeon, Simetrical, Sixpence, Skritek, Smjg, Smurfix, Snezzy, Snigbrook, Socialservice, Sonett72, Soulpatch, Soumyasch, Spacesoon, Sstrader,
Stacyshaelo, Stannered, Starwiz, Stephen e nelson, Stephenb, SteveHL, Stifle, Stolkin, Strike Eagle, Sue Rangell, Superjaws, Sydneyw, Sylvain Mielot, Szathmar, Taw, Tbhotch, Tcamacho,
Tedickey, Teknic, Tgantos, Thane, The Thing That Should Not Be, The undertow, The1physicist, Tide rolls, Titofhr, Tobias Bergemann, Toddst1, Tom Lougheed, Tom Morris, Tommy2010,
Toxicwaste288, Traxs7, Troels Arvin, Turnstep, Twinney12, Tyc20, Unforgettableid, Upholder, Utcursch, Vald, Valdor65, Vampyrium, VanishedUserABC, Velella, VinceBowdren, Vladsinger,
Vodak, Voidxor, Waggers, Wakimakirolls, Wammes Waggel, Wavelength, Wexcan, WikiPuppies, WikipedianYknOK, Wildheat, Wilfordbrimley, Wilsondavidc, Winterst, Wjhonson,
Woohookitty, WookieInHeat, Xiong Chiamiov, Xiroth, Yong-Yeol Ahn, Zedla, Zeyn1, Zhenqinli, Zzuuzz, 石 庭 豐, 1332 anonymous edits

Database storage structures Source: http://en.wikipedia.org/w/index.php?oldid=565777290 Contributors: Abdull, Alai, Andrewman327, Beland, Decrease789, ElKevbo, Grafen, Jaytwist,
Lenshapir, Mark Renier, Mskfisher, Rocketrod1960, Rursus, Troels Arvin, TubularWorld, 21 anonymous edits

Distributed database Source: http://en.wikipedia.org/w/index.php?oldid=575281332 Contributors: Alansohn, Ammubhave, Anthony, Arthur Rubin, Beland, Bomazi, Bporopat, CanisRufus,
Centrx, Compfreak7, Danim, Derbeth, Dewritech, Donhalcon, Dpkade, Eastlaw, Eliz81, Gary King, Gensanders, GeorgeBills, Gregbard, Hooperbloob, Hu, Intelligentfool, Intgr, JCLately,
Jamelan, Jandalhandler, Jason.yosinski, Jim1138, KeyStroke, Kku, Kuteni, Lguzenda, LilHelpa, M4gnum0n, Magioladitis, MelRobinson, Mere Mortal, Michaellacorte, Miym, Mschlindwein,
Nikhil search, Nivix, Nonnompow, Owenja, Ozsu, Passport90, Pebkac, Perfecto, Peruvianllama, PigFlu Oink, Prasanna8585, Ramaksoud2000, Satellizer, Sboehringer, Shibaji.paul, Sparky132,
Squiddy, Sun Creator, Tempodivalse, Terry1944, TheThomas, Uncle Dick, Vektor330, Wbigger, Wizgha, 161 anonymous edits

Federated database system Source: http://en.wikipedia.org/w/index.php?oldid=571954221 Contributors: Beland, Bovineone, Cantonnier, Chris the speller, Comps, DBigXray, Dfoxvog, Frap,
Gilo1969, Hu12, Joy, Khazar2, KingsleyIdehen, Kku, MacTed, Mark Renier, Martarius, Meena610, Mgh12, P. Dantressangle, Pmehra5730, Pumba lt, R'n'B, Repentsinner, Rettetast, Ringbang,
Rjwilmsi, Sfan00 IMG, Shyamal, Tabletop, Tankiitr, The Thing That Should Not Be, TheParanoidOne, Threazy, Uthbrian, VanishedUserABC, Venullian, Woodshed, Yann Gripay, 63
anonymous edits

Referential integrity Source: http://en.wikipedia.org/w/index.php?oldid=576386750 Contributors: A3 nm, Aim Here, Allens, Amux, Andy Dingley, AnubisAscended, AutumnSnow, BL,
Bearcat, Brandon, Brick Thrower, Daniel.Cardenas, Darkunor, Daviburg, DavidLevinson, Elwikipedista, Excirial, FatalError, Flon22, Friendlydata, Greentryst, I dream of horses, KeyStroke,
Kmarshba, Lost tourist, Mark Renier, Materialscientist, Michael.Urban, Mindmatrix, Mtking, Muslim lo Juheu, Nburden, Neurolysis, Niceguyedc, Nivix, Obradovic Goran, Omicronpersei8,
PatrickJCollins, Penartur, Philip Trueman, Psb777, Reatlas, Reedy, RuM, Sae1962, Sam Hocevar, Sietse Snel, Simtay, Snodnipper, Staszek Lem, Suvs2011, Ta bu shi da yu, Tarquin,
Tolly4bolly, Varuna, Wjhonson, Wlievens, 113 anonymous edits

Relational algebra Source: http://en.wikipedia.org/w/index.php?oldid=574653092 Contributors: 2620:0:1002:1003:C06E:62E9:72C9:FDA2, Agquarx, Alain Amiouni, Alan Liefting, Alansohn,
AlecTaylor, AndrewWarden, Anuj royal, Arthur Rubin, Arunloboforever, Austinflorida, AutumnSnow, Banazir, BiT, Blahedo, Blaisorblade, Brick Thrower, Bug, CALR, CRGreathouse,
Cdrdata, Charvest, Chewings72, Chocolateboy, Chris the speller, Clawed, Cmdrjameson, Combatentropy, Cometstyles, CountMacula, Cryout, Cybercobra, Cycchina, DaveVoorhis, Davidfstr,
Davnor, Derbeth, Dessources, Dhanuthilaka, DoriSmith, Download, Drowne, Drunken Pirate, EagleFan, Ed g2s, Edcolins, Egmontaz, Egriffin, Elektron, Elwikipedista, Esalder, Ezrakilty, Fabian
Pijcke, Falcor84, Flyhighplato, Fresheneesz, FuFoFuEd, Gazpacho, Geira, Giftlite, Gregbard, GregorB, Hadal, Hans Adler, Hasanv, Hughitt1, Hussaibi, Hypergraph, IceCreamAntisocial,
Infestor, IvanLanin, JackPotte, Jan Hidders, Jan1nad, Jarble, Javert16, JingguoYao, Jleedev, Joebolte, JohnyDog, Jon Awbrey, Joseph Dwayne, Jsnx, Juansempere, Justin W Smith, Kanenas,
Keegan, KelvSYC, Khalid hassani, Kinaro, Kjetil r, Kku, Klausness, KnightRider, LOL, Lambiam, Larsinio, Leaflord, Lemycanh, Lfstevens, LtWorf, Magic5ball, Maksim-e, Mandries, Mani1,
Mark Renier, Matthiaspaul, Mckaysalisbury, Mcthree, Mdd, Mets501, Michael Hardy, Michealt, Mikeblas, Mindmatrix, Msnicki, Myheimu, Nbarth, NewEnglandYankee, Ntmatter, O.Koslowski,
Ocranom, Oleg Alexandrov, PanagosTheOther, Peruvianllama, Peter.vanroose, Pgan002, Phamthelong, Polluxian, Popol1991, Qwertyus, R'n'B, Rathgemz, Reedy, Rgrimson, Rishig327,
Rjwilmsi, Rleyton, Rsrikanth05, Ruakh, Rursus, Salix alba, Sam Staton, Samppi111, Sbrenesms, Scf1984, Schmid, Sdorrance, ShadowPhox, Shreyasjoshis, Sir Nicholas de Mimsy-Porpington,
Slgcat, SnowFire, Sspecter, Stephan202, Tablizer, Tgeairn, The undertow, Tijfo098, Tommy2010, Tompsci, Troels Arvin, Twimoki, Vaucouleur, Vegpuff, Viperlight89, Wavelength, Way2veers,
Wayne Slam, We64, Wifki, Wikipelli, Wrp103, Xcpenguin, Yoosofan, Zink Dawg, Ziusudra, と あ る 白 い 猫, 343 anonymous edits

Relational calculus Source: http://en.wikipedia.org/w/index.php?oldid=541136897 Contributors: AutumnSnow, Cdrdata, Elwikipedista, Gregbard, Guppyfinsoup, Jan Hidders, Jim1138, Joieko,
Jpbowen, Kku, Leandrod, Lfstevens, Mark Renier, Michael Hardy, Mikeblas, Mindmatrix, Omnipaedista, Opabinia regalis, Pewwer42, Remuel, Robert L Pendleton, Rsrikanth05, SqlPac,
TheTito, 26 anonymous edits

Relational database Source: http://en.wikipedia.org/w/index.php?oldid=577025448 Contributors: *Kat*, 01001, 127, 217.162.105.xxx, 2620:0:1000:1402:6E3B:E5FF:FE0D:9B37,
64.192.12.xxx, Abdull, Abolen, Adamcscott, Adamrush, Admrboltz, Agateller, Ahoerstemeier, Alain Amiouni, Alansohn, Andre Engels, Angela, Anuja297, Appzter, Astheg, AutumnSnow,
Avoided, Banes, Beland, Benderjaii, Beno1000, Bitnine, Bobo2000, Boothy443, Booyabazooka, Bpalitaa, Brennamack, Brick Thrower, Bsdlogical, CALR, Calmer Waters, Calvernaz,
Chris.Giles, Chrislk02, Conversion script, Cpiral, Craig Stuntz, Crosbiesmith, Cww, DARTH SIDIOUS 2, DVdm, Dandv, Danim, Dannydaman9, Darth Mike, Dave6, David Delony, Dfeuer,
DinosaursLoveExistence, Dionyziz, Dirk P Broer, DoorsAjar, Download, Drgs100, Dschwart11, Dumbledad, EagleFan, Eik Corell, El C, ElKevbo, Emperorbma, Fabrictramp(public), FatalError,
FayssalF, Ferkelparade, Fidimayor, Fieldday-sunday, Filiocht, Findling67, FlyingDoctor, Francs2000, Fratrep, Fred Bradstadt, Freediving-beava, Frigotoni, Fuddle, Gaur1982, Gerbrant, Giftlite,
Glane23, GoingBatty, Graham87, HJ Mitchell, Hapsiainen, Harold f, Herostratus, Hmrox, Hp-NJITWILL, I do not exist, ILikeBeer, IRP, Ideogram, Iohannes Animosus, J.delanoy, JCLately,
JLaTondre, JaGa, Jacobrothstein, Jan Hidders, Jarble, Jitendraapi, Jncraton, John Vandenberg, Johnuniq, Jon Awbrey, Jwoodger, Jóna Þórunn, K faiad, KingsleyIdehen, Klausness,
KnowledgeOfSelf, Kostmo, Kraron, Kristensson, Krogstadt, Kuru, Lalapicklem, Lamp90, Larsinio, Leandrod, Lfstevens, Linlasj, Logthis, Looxix, Luna Santin, LyricalCat, MC MasterChef,
MER-C, Mac, MainlyDigGrammar, Mandarax, Manop, Mark Renier, Mark T, Mav, Mblumber, Mckaysalisbury, Merlion444, Metroking, Michael Hardy, Michael Hodgson, Mikeblas,
MilerWhite, Mindmatrix, Msikma, NHRHS2010, Nannahara, Nanshu, Nisantha04, Niteowlneils, Nocohen, Ns.code, Odie5533, Odysseus1479, Olinga, Oursinees324, OwenBlacker,
Oxymoron83, Pablo323, Pdcook, Pearle, Philcha, Pietdesomere, Pinkadelica, Psb777, Psychcf, Quitchy, Rasmus Faber, RayGates, Rchertzy, Rfl, Riggz0rer, Romanm, Rrburke, SandyGeorgia,
Scouser0phil, Sequologist, Sfe1, Sgiovannini, Shinju, Sir Nicholas de Mimsy-Porpington, Sir Vicious, Sjschultz, Slightlyusefulcat, Smjg, Solipsist, Sonett72, Specialbrad, Spiritia, Spudtater,
SqlPac, Stare at the sun, SteinbDJ, Steve Casburn, Stryn, Super48paul, Supten, TJRC, Tcncv, Tcnuk, Ted Longstaffe, Teles, TheDJ, Thingg, Tijfo098, Tobias Bergemann, Todd Vredevoogd,
Tom harrison, Triddle, Triwbe, Troels Arvin, Ttguy, Turnstep, Utcursch, Vespristiano, Wavelength, Wesley, Wfrys, Wolfraem, Wolfsbane2k, Xiong, Xphile2868, Zahid Abdassabur, Zipircik,
580 anonymous edits

Relational database management system Source: http://en.wikipedia.org/w/index.php?oldid=576713352 Contributors: 16@r, AMD, Abb615, Acrider, Afabbro, Aldie, Ale And Quail,
Altenmann, Anastrophe, Anvish, Anwar saadat, Apokrif, Athaenara, AutumnSnow, BL, BMF81, Ballin Insane10, Beland, Bgibbs2, Bob hoskins, BodyTag, Bonadea, Borgx, Brassrat70s,
Bressan, Brick Thrower, Brilliantwiki, Cactus26, Chaitrabhat7, Chris Roy, Cnb, Craig Stuntz, Crosbiesmith, Cryptic, Cwitty, DB 103245, Darx9url, Davedx, Daverocks, Dewritech,
DigitalEnthusiast, Dockurt2k, Elwikipedista, EoganOD, Faizan, FatalError, Fatehyab ahmed, Flata, George Rodney Maruri Game, Grunt, Gurch, HEAdrian, Heimstern, II MusLiM HyBRiD II,
Igoldste, Igor Yalovecky, Ikhzter, J.delanoy, J36miles, JCLately, JFM, JHMM13, JamesBWatson, Jameshfisher, Jan Hidders, Jdthood, Jnlin, Joao.matos, Josemanimala, Joseph Dwayne, Joseph
chennai, Jtgerman, Kaihsu, Karada, Kate, Kernel.package, KeyStroke, Kingston Dominik, Klausness, Kotika98, Kuru, Larsinio, Leandrod, Lfstevens, LinguistAtLarge, Lowellian, Lulu of the
Lotus-Eaters, Mangoe, Mark Renier, Maximaximax, Mckaysalisbury, MelbourneStar, MikeSchinkel, Mikeblas, Mindmatrix, Minghong, Mintleaf, Mr4top, Mxn, Neilc, Nicks100,
NuclearWarfare, Nylex, Oberiko, Obradovic Goran, Ohnoitsjamie, Ohyoko, Palica, Paulcolmer, Payal2820, PhiLiP, Pi, Pichpich, Pratyya Ghosh, Quest for Truth, RedHillian, Reddi, Reedy, Rfl,
Rhobite, Robert Brockway, Rror, Sasquatch, Setppo, Shabbirbhimani, Shepazu, Smyth, Sparkiegeek, SqlPac, Stevegiacomelli, Szajd, Tablizer, TallMagic, TenPoundHammer, Tolly4bolly,
Tomcat66 g500, Troels Arvin, Turnstep, UnDeRTaKeR, Uriber, Useight, VTPG, Vanished user qkqknjitkcse45u3, Vegaswikian, Vincent Liu, WIKIWIZWORKER, Wykypydya, Xcasejet,
Xphile2868, Лев Дубовой, 382 anonymous edits

Relational model Source: http://en.wikipedia.org/w/index.php?oldid=573775447 Contributors: 130.94.122.xxx, 62.114.199.xxx, A930913, Adamcscott, Altenmann, AndrewWTaylor,
AndrewWarden, AndyKali, AnonMoos, Arthur Rubin, Ashrust, Asukite, Audiodude, AutumnSnow, Aytharn, BD2412, BMF81, Babbling.Brook, Bblfish, Beland, Bento00, Bobo192,
BonsaiViking, Brick Thrower, Brion VIBBER, Budloveall, CBM, Cadr, Cathy Linton, Cconnett, ChaosControl, Chessphoon, Chrisahn, Chrissi, Conti, Conversion script, Craig Stuntz,
Crashoffer12345, Crosbiesmith, DARTH SIDIOUS 2, Damian Yerrick, Danim, DaveVoorhis, David Eppstein, Derek Ross, Dreadstar, Drunken Pirate, EagleFan, Ehn, Elwikipedista, Emx, Enric
Naval, Erik Garrison, Evildeathmath, Furrykef, Fyrael, Gadfium, Gary D, Gary King, Giftlite, Gilliam, Grassnbread, Greenrd, Gregbard, GregorB, Gurch, Hans Adler, Helvetius, Hyacinth,
Ideogram, Iluvitar, Immunize, Irishguy, Ixfd64, J04n, JCLately, Jadedcrypto, Jalesh, Jan Hidders, Jarble, Jbolden1517, Jeff3000, JesseW, Jklowden, Jmabel, Joelm, Jon Awbrey, Jpbowen, Kassie,
Kendrick Hang, Ketiltrout, Khalid hassani, Kimchi.sg, Kjkolb, Klausness, Korrawit, Lahiru k, Larsinio, Leandrod, Leifbk, Lethe, Lfstevens, Lopifalko, MER-C, Madjestic, Magioladitis,
Maokart444, MarXidad, Marc Venot, Mark Renier, Materialscientist, Matt Deres, Mblumber, Mckaysalisbury, Mdd, Metaeducation, Mets501, Mhkay, Michael Hardy, MilerWhite, Mindmatrix,
Moogwrench, Muntfish, NSash, Nad, Nascar1996, Neilc, Niteowlneils, NonDucor, Nsd, Ocaasi, Ocrow, Ozten, Pablothegreat85, Paul Foxworthy, Pitix, Pmsyyz, Pol098, PsychoAlienDog,
Quazak Zouski, R'n'B, Razorbliss, Rbrwr, Reedy, Reyk, RonaldKunenborg, Ronhjones, Rp, Rursus, Ruud Koot, S.K., Sae1962, Sdorrance, Seraphim, SeventyThree, Sietse Snel, Simetrical,
SimonP, Sonett72, Spartan-James, Spellcast, SpuriousQ, SqlPac, SteinbDJ, Stevertigo, THEN WHO WAS PHONE?, Tatrgel, Teknic, The-G-Unit-Boss, Tjic, Tobias Bergemann, Tohobbes,
Tony1, Toreau, Troels Arvin, Tualha, Turnstep, Vikreykja, Welsh, Wgsimon, Windharp, Winhunter, Wjhonson, Woohookitty, Zklink, 303 anonymous edits

Object-relational database Source: http://en.wikipedia.org/w/index.php?oldid=567656167 Contributors: Acatyes, AndrewWTaylor, Beland, Bohunk, Bryan Derksen, Cbayly, CesarB,
ChandraASGI, Chikako, Cybercobra, Danim, Diberri, Dmsar, DougBarry, Dze27, Enric Naval, FatalError, JLaTondre, Jamelan, Jay, Jerome Charles Potts, LedgendGamer, Mark Renier, Maury
Markowitz, Mdd, Mindmatrix, Mrwojo, Mwtoews, Nmushov, Nthomas, Oxymoron83, Pedant17, Premil, Razorbliss, Rouenpucelle, Rp, Rursus, SeanTater, Sergsav, Sémaphore, Tedickey,
Theking2, Thomas Willerich, Tijfo098, Tom, Turnstep, Vald, 73 anonymous edits

Article Sources and Contributors 236

Transaction processing Source: http://en.wikipedia.org/w/index.php?oldid=574602965 Contributors: 16@r, Abdull, Adolphus79, Agateller, Akulkis, Alkamins, Atlant, Avb, Awolski,
BBCWatcher, BD2412, Baiji, Beland, Beve, Bnicolae, Bruvajc, CaroleHenson, Cbwash, Chairman S., Charleyrich, Clausen, Cliffb, Craig Stuntz, CutOffTies, DGG, Danielle009, Danim, Donsez,
Download, Ellynwinters, Gf uip, Ghaskins, Gordonjcp, GregRobson, Gutza, JCLately, JHunterJ, Jan1nad, Jmcw37, Jorgenev, Joshua Scott, Kgf0, Khalid hassani, Kubanczyk, Lear's Fool, Luís
Felipe Braga, M4gnum0n, MER-C, MONGO, Mandarax, Mark Renier, Maury Markowitz, Mika au, Mikeblas, Mindmatrix, MrOllie, Oo7nets, Oxymoron83, Pcap, Peter Flass, Pratyeka,
Radagast83, Rbpasker, Rettetast, Ruud Koot, SEWilco, Stephan Leeds, Stymiee, Suruena, Tobias Bergemann, Tschristoppe, Unimath, Uzume, Wireless friend, Wtmitchell, Zippy, Zzuuzz, 106
anonymous edits

ACID Source: http://en.wikipedia.org/w/index.php?oldid=577826570 Contributors: 123Hedgehog456, 2001:18E8:3:11BC:20D:56FF:FE85:C51, Accurizer, Acdx, Af648, Agnt9, AlanUS,
Amolshah, Andrei S, Anthony Appleyard, AxelBoldt, Barefootguru, Barrylb, Beland, Benandorsqueaks, Bernhard Bauer, Bezenek, BlueNovember, Bluiee, Boing! said Zebedee, BonsaiViking,
Bunyk, CPColin, Ceyockey, Christian75, Clausen, Cole2, CorbinSimpson, DAllardyce, DHN, Daniel11, Dave.excira, Decibel, DevonDBA, Download, DragonLord, Drake Redcrest,
Duncan.Hull, E2eamon, Edward, Elwikipedista, Endersdouble, Epbr123, Espoo, Excirial, FatalError, FayssalF, Flewis, Forderud, Fragglet, Fubar Obfusco, Fylbecatulous, Gakusha, Gf uip,
Ghostdood, Gioto, Golfguy399, Gorgan almighty, GregRobson, Gurchzilla, HJ Mitchell, Haakon, Harsh 2580, Heiser, Hellknowz, Hmrox, I dream of horses, IMSoP, Inimino, Inter16, Intgr, It Is
Me Here, Ivan Pozdeev, J.delanoy, JCLately, Jagun, Jaydlewis, Jeff G., Jessemerriman, Jim1138, Jleedev, Jontomkittredge, Joonasl, Jordonbyers, Jpbowen, Kainaw, Kam Solusar, Karada,
Kd24911, Kirilldoom16, Kku, Kmorozov, Kristof vt, Larsinio, Lee Carre, Lfstevens, Loren.wilton, LuoShengli, Luís Felipe Braga, MacMog, Maimai009, Makecat, Marek69, Mark Arsten, Mark
Renier, Markonen, Martin451, Materialscientist, Matusz, Maury Markowitz, Mcherm, Mdann52, Michael Hardy, Mindmatrix, Miym, MrRedwood, Mrwojo, Mskfisher, Mynameissskr, Neilc,
NewAspen1, Ngpd, Nmfon, Noformation, Noommos, Passargea, Paul Foxworthy, Paul Magnussen, Personman, Petiatil, PierreAbbat, Pip2andahalf, Polupolu890, Ponder, Pontificalibus, Poor
Yorick, Prachee.j, Prasannawikis, Premsurya, Puffin, Quuxplusone, R'n'B, RUL3R, Raja99, Raztus, RedWolf, Redrose64, Reelrt, Renku, Rfl, Rich Farmbrough, Rjwilmsi, Rlaager, Rob7139,
Sae1962, Saeed Jahed, Safalra, Salix alba, Saucepan, Sean D Martin, SeanAhern, Seaphoto, Sesshomaru, Shenme, Shmuelsamuele, Siggimund, Siskus, Some jerk on the Internet, SpaceFlight89,
SqlPac, Stangaa, StephanCom, Strike Eagle, Surturz, Suruena, Svick, Swamp Ig, Synchronism, Tabledhote, Tagus, Tct13, Tgeairn, Thecodysite1, ThinkerFeeler, Thomas Willerich,
Throwaway85, Thumperward, Tide rolls, Titodutta, Tolly4bolly, Tommy2010, Trefork, Triesault, Trusilver, Trvth, Turnstep, UFu, Uiteoi, Urhixidur, Verloren, Vertium, Vhabacoreilc, Victor
falk, Vina, Viridae, Vrenator, WadeSimMiser, WhiteOak2006, Wikipelli, Wildrain21, Winston Chuen-Shih Yang, Woo333, Wykypydya, Yazan kokash23, Yourbane, Ytcracker, Yurik,
ZappaOMati, Zhenqinli, Zigger, Zippy, Zoicon5, Σ, 579 anonymous edits

Create, read, update and delete Source: http://en.wikipedia.org/w/index.php?oldid=574555474 Contributors: 5994995, Absinf, Alex2222, Alvin-cs, Ant, Antonielly, Apokrif, Banzaimonkey,
Beatupbutterfly, Bovski, Chris Purcell, DaGizza, Demonkoryu, Dhartung, Donperk, Dreftymac, Eraldito, FeRD NYC, Fgrinder, Fluffernutter, Fred Bradstadt, Gary King, Garylhewitt, Gjs238,
Gobbleswoggler, Gogo Dodo, Guoxiao281, Herbee, Iancarter, Intgr, James Harvard, Jarble, Jim1138, Jleedev, Jmkim dot com, Kazvorpal, Kbrose, KeithTyler, Kenyon, Khalid hassani,
KnightRider, Korg, Kozuch, L Kensington, Leonus, Lord Zoner, LucQ, Luís Felipe Braga, Lyverbe, Mark McColl, Mark Renier, MarkusStolze, Martnym, Max Terry, Metal.lunchbox, Mike
Blackney, Mikeblas, Mindmatrix, Mr e guest79, Mzajac, Napoleonsacrebleu, NawlinWiki, Nepenthes, OguzOzkeroglu, Pinethicket, Pmcm, RJFJR, Railwayfan2005, Rayngwf, Remuel, Richnice,
RickScott, Robert K S, RobertG, Robertbowerman, Sannse, Sawall, Stephan Leeds, Syhon, Techi2ee, Thorwald, Thüringer, Troels Arvin, Unixxx, Vectro, Wesley, Winterst, Zanerock, Zegoma
beach, 190 anonymous edits

Null (SQL) Source: http://en.wikipedia.org/w/index.php?oldid=577846588 Contributors: Abdull, Alejos, Andreas Kaufmann, Andylkl, Andyyso, Arcann, Beno1000, Bgwhite, Bradeos
Graphon, Cedar101, Cybercobra, Daniel.Cardenas, Dudegalea, EJSawyer, Ehdrive11, Elwikipedista, Furrykef, Gaius Cornelius, Gregbard, GregorB, Halo, Harryboyles, Haus, HaywardRoy,
Hu12, Igor Yalovecky, Incnis Mrsi, Iqbalhosan, Jdlambert, John of Reading, Jonathan de Boyne Pollard, Julesd, Koavf, Kobrabones, Langpavel, Lightmouse, LilHelpa, Loadmaster, Luís Felipe
Braga, MER-C, Mahahahaneapneap, Malleus Fatuorum, Mark Renier, Matozqui, Mblumber, MeekMark, Michael Hardy, Mikeblas, Mindmatrix, Modify, Mwtoews, Myheimu, Nigelj, Nirion,
Northernhenge, Ntounsi, Ott2, Plustgarten, Quadell, Random832, Rich Farmbrough, Rjwilmsi, RockMFR, Ruakh, Senpai71, Simetrical, SmallRepair, Smith609, SnappingTurtle, SqlPac, Stolze,
Tasdevil13, Terrifictriffid, Teukros, The Fortunate Unhappy, Three-quarter-ten, Tijfo098, Tony1, Visor, Voer, Xoneca, Zeeyanwiki, Zhenqinli, 109 anonymous edits

Candidate key Source: http://en.wikipedia.org/w/index.php?oldid=575890156 Contributors: Acroterion, AlexPlank, Amikake3, AndrewWarden, Arravikumar, Axiomsofchoice, Brick Thrower,
Bryant1410, Captmjc, Charles Matthews, Crosbiesmith, CyborgTosser, DMacks, DVdm, Dharmabum420, Docu, Ejrrjs, Eric22, FuthaMukker, Hans Adler, HenningThielemann, J.delanoy, Jan
Hidders, Jleedev, Jorge Stolfi, Josephbui, JoshDuffMan, Kalyson, KeyStroke, LanguageMan, Mark Renier, Massic80, Materialscientist, MiloszD, Mindmatrix, Mwtoews, Nabav, Neilc,
Obradovic Goran, Patriotic dissent, Possession, ProcerusDecor, Prodizy, Rbrewer42, Rholton, Richaraj, Ronald S. Davis, SqlPac, Sreyan, Stolkin, Torzsmokus, Weedwhacker128, Yahya
Abdal-Aziz, ZeroOne, Δ, 石 庭 豐, 96 anonymous edits

Foreign key Source: http://en.wikipedia.org/w/index.php?oldid=577704950 Contributors: 16@r, Abdull, Amix.pal, Anbu121, AndrewWarden, Arichnad, Arthur Schnabel, Arunsinghil,
Aurochs, AutumnSnow, Beesforan, Biochemza, Brick Thrower, Can't sleep, clown will eat me, Cander0000, Causa sui, Clarificationgiven, Cory Donnelly, Cpiral, Cww, DHN, Darth Panda,
Derek Balsam, DireWolf, Dobi, Dougher, EWikist, Eldavan, Electricnet, Entropy, FatalError, Feder raz, Fluffernutter, Flyer22, Frap, Govorun, GregorB, Gsm1011, IanHarvey, JHunterJ,
Jadriman, Jesselong, Jim1138, Jk2q3jrklse, Jlenthe, Joebeone, John of Reading, KeyStroke, Kf4bdy, Kubntk, Larsinio, Marcusfriedman, Mark Renier, MexicanMan24, Mike Rosoft, Mikeblas,
MikeyTheK, Mindmatrix, Minimac, Mmtrebuchet, Mogism, Mormegil, MrOllie, Mrt3366, Natalie Erin, Ngriffeth, O.Koslowski, Obradovic Goran, PPOST, Pbwest, Peak, Polypus74, RIL-sv,
Reedy, Rjwilmsi, Rror, Rsrikanth05, SDS, Salvatore Ingala, Sboosali, Selfworm, Semperf, Shreyasjoshis, Species8473, Staecker, Stolze, Svenmathijssen, Tarquin, Tgeairn, The Thing That
Should Not Be, TheExtruder, Threeacres, Timhowardriley, TobiasPersson, Troels Arvin, Unordained, Waskyo, WikHead, Zipz0p, Δ, 石 庭 豐, 220 anonymous edits

Unique key Source: http://en.wikipedia.org/w/index.php?oldid=571010506 Contributors: Aberdeen01, Ahoerstemeier, Akyadav324, Alessandro57, Alexjbest, AmandeepJ, Ambuj.Saxena,
Andre.psantos, Baa, Blue Square Thing, Boson, Causa sui, ChrisGualtieri, Ctimko, DarkFalls, DeadEyeArrow, Dgc03052, Dougher, Drphilharmonic, Ewebxml, Faizan, Feraudyh, Fnielsen, Frap,
Gurch, Hike395, J.delanoy, JHunterJ, Jberkus, Jbodilytm, Jdeperi, Jesdisciple, Joe.dolivo, Jorge Stolfi, Jyothisdavid4u, KeithB, L'Aquatique, L337 kybldmstr, LittleOldMe, Loren.wilton,
Mahemoff, Materialscientist, Mindmatrix, Minimac, Mwtoews, Nabav, Natalie Erin, Northamerica1000, O.Koslowski, Obradovic Goran, Pevernagie, Praveentech, ProcerusDecor, Raja200682,
Ratarsed, RobIII, Spartaz, Special Cases, Spinality, Stolze, Subversive.sound, Themusicgod1, Thumperward, Tijfo098, TommyG, Troels Arvin, Unixxx, Velavan, Vjosullivan, Wensceslao,
Whitejay251, Wiki.Tango.Foxtrot, Winterst, X201, Yintan, Ykliu, Zzuuzz, 113 anonymous edits

Superkey Source: http://en.wikipedia.org/w/index.php?oldid=573338089 Contributors: 2001:700:303:D:8DF3:FDC7:B975:9C41, 2001:700:303:D:BCEB:D496:EA00:FD55, AndrewWarden,
Anog, AutumnSnow, Boson, CeleronNutcase, CharlotteWebb, ColinFine, Crosbiesmith, Dawynn, Fatherlinux, Fimp, Igor Yalovecky, IronGargoyle, James Crippen, Jan Hidders, Jorge Stolfi,
Jusdafax, Jwulff, Katieh5584, KeyStroke, Kranix, LOL, Larsinio, M. Frederick, Magioladitis, Mark Renier, Metron4, Michaelcomella, Mikeblas, Millermk, Mindmatrix, Nabav, Pimlottc,
ProcerusDecor, Reedy, Rhoerbe, SpuriousQ, Sss41, Stbrob, The Thing That Should Not Be, TheParanoidOne, Tobias Bergemann, Torzsmokus, Twarther, Voidxor, Welsh, Wikitanvir, Yay unto
the Chicken, Zzuuzz, ʘx, Δ, 石 庭 豐, 74 anonymous edits

Surrogate key Source: http://en.wikipedia.org/w/index.php?oldid=572624859 Contributors: 2001:4898:98:2041:2468:9C5:9E15:D5AF, Barliner, Brick Thrower, Bryant1410, ChrisNoe,
Chrisxue815, DVdm, Darinw, Demitsu, Djankowski, Dtuinhof, Egrabczewski, Favonian, Govorun, Groggy Dice, Hairy Dude, Hsauzier, Int19h, Jberkus, Jimgawn, Joeharris76, KeyStroke,
Kgaughan, Kjkolb, LachlanA, Leandrod, Lucianosother, M4gnum0n, Mark Renier, Mcbridematt, Mcclarke, Mdchachi, Mdd, Mindmatrix, MyTigers, Neilc, Pearle, PhiLiP, Phil Boswell,
Pinkadelica, Raggatt2000, Reddyfire, Reedy, Rich Farmbrough, Rjwilmsi, Robert K S, Shadowjams, Shenme, Simetrical, Sleske, Stewartadcock, Template namespace initialisation script, Tfitzg,
Tim.spears, Timhowardriley, Toh, Tomas e, Troels Arvin, Vjosullivan, WikipedianMarlith, Xenan, 160 anonymous edits

Armstrong's axioms Source: http://en.wikipedia.org/w/index.php?oldid=575689045 Contributors: A3 nm, Aednichols, Andonic, Arosa, CBM, Can't sleep, clown will eat me, Charles
Matthews, ChrisGualtieri, Cornellcloud, Entropeter, Inklein, Jh559, Jonemerson, Joseph Dwayne, LouI, Mark Renier, Mentoz86, Paolo Serafino, Q-lio, Telofy, Tijfo098, Vegpuff, Wavelength,
62 anonymous edits

Relation (database) Source: http://en.wikipedia.org/w/index.php?oldid=576215376 Contributors: AndrewWarden, Asfreeas, Asocall, AutumnSnow, Crosbiesmith, Ed Poor, Fratrep, Georgeryp,
Icairns, Lfstevens, MaD70, Mark Renier, MusiKk, NickCT, Nigwil, Rob Bednark, Subversive.sound, Tijfo098, Universalss, 14 anonymous edits

Table (database) Source: http://en.wikipedia.org/w/index.php?oldid=571781837 Contributors: 12george1, 16@r, Abdull, Ajraddatz, Alai, Arcann, AutumnSnow, Blanchardb, Bobo192,
Bongwarrior, Bruxism, C.Fred, Cbrunschen, Correogsk, Cyfal, DARTH SIDIOUS 2, Danim, Dreftymac, Dzlinker, Epbr123, FattyMcjimmy, Feder raz, Funnyfarmofdoom, Gurch, IMSoP,
IanCarter, J36miles, Jamelan, Jerome Charles Potts, Krishna Vinesh, Larsinio, LeonardoGregianin, Lfstevens, Mark Renier, Materialscientist, Mblumber, Mikeblas, Mikeo, Mindmatrix,
Morad86, N0nr3s, Nibs208, Nikuwap, Ofus, Pyfan, Quentar, S.K., Sae1962, Scs, Senator2029, Sietse Snel, SimonP, Sippsin, Sonett72, SqlPac, Stolze, TheParanoidOne, TommyG, Turnstep,
Txomin, Versageek, Widefox, Yug1rt, Zhenqinli, 101 anonymous edits

Column (database) Source: http://en.wikipedia.org/w/index.php?oldid=575439689 Contributors: AbsoluteFlatness, Arcann, CesarB, CommonsDelinker, Danim, Dreftymac, Frietjes, Fæ,
GermanX, Huiren92, Jmabel, KeyStroke, Mark Renier, Mark T, Mzuther, Petrb, RJFJR, Sae1962, Sietse Snel, SqlPac, 石 庭 豐, 13 anonymous edits

Row (database) Source: http://en.wikipedia.org/w/index.php?oldid=555504177 Contributors: 2help, Allen3, Asfreeas, CommonsDelinker, D4g0thur, Danim, David H Braun (1964), Flip,
GLaDOS, Gail, GermanX, Glacialfox, GregorySmith, Jamespurs, Jerroleth, Jmabel, KKramer, KeyStroke, Liujiang, Mark Renier, Mark T, Mxg75, Mzuther, O.Koslowski, Oyauguru, Pnm,
Pol098, Retodon8, Rjd0060, Ronhjones, Shaka one, Sietse Snel, SootySwift, Troels Arvin, Yamamoto Ichiro, 29 anonymous edits

View (SQL) Source: http://en.wikipedia.org/w/index.php?oldid=574141903 Contributors: Abdull, Acjelen, Alai, Andrew.george.hammond, Anthony Appleyard, Blowdart, Boson,
BullRunner2009, Cedar101, Christian75, ClementSeveillac, Dcoetzee, Dfrg.msc, Edwardzhu, Elcasc, Ewebxml, FernandoAires, Fragment, Galador, JDHeinzmann, JForget, JLaTondre,

Article Sources and Contributors 237

JeepdaySock, Jerome Charles Potts, Joaquin008, Jobbin, Jtgerman, Jwoodger, Kibbled bits, Kku, Kuru, Larsinio, Mark Renier, Mathmo, Matinict, Mikeblas, Mindmatrix, MrOllie, Muchium,
Nothings, Quentar, Quuxplusone, RaBa, Raeky, Rfl, Ricardo rivaldo, Rjwilmsi, Roux, Rsrikanth05, Ruud Koot, S.K., Sappy, Scrool, Sippsin, Smalljim, Stolze, TheDamian, TommyG, Toyota
prius 2, Troels Arvin, UncleDouggie, WmLGann, Woohookitty, Wwphx, Z.E.R.O., Zerodeux, Zhenqinli, 144 anonymous edits

Database transaction Source: http://en.wikipedia.org/w/index.php?oldid=576565184 Contributors: 16@r, Adi92, Ajk, Al3ksk, AmandeepJ, AnmaFinotera, Appypani, Babbage, Binksternet,
Burschik, CharlotteWebb, Clausen, Comps, Craig Stuntz, DCEdwards1966, Damian Yerrick, Daniel0524, Dauerad, Derbeth, DnetSvg, Forderud, Fratrep, Geniac, Georgeryp, Gerd-HH, Gf uip,
Ghettoblaster, GregRobson, Haham hanuka, Hbent, Hede2000, Highguard, HumphreyW, Intgr, JCLately, Jarble, Jason Quinn, Jeltz, Karel Anthonissen, KellyCoinGuy, KeyStroke, Khukri,
Larsinio, Leeborkman, Lingliu07, Lubos, Luc4, Lysy, M4gnum0n, Mark Renier, Matiash, MegaHasher, Mike Schwartz, Mikeblas, Mindmatrix, Mintleaf, Neilc, Nixdorf, OMouse, Obradovic
Goran, Owen, Paul Foxworthy, Pcap, Pepper, RedWolf, RichMorin, Rocketrod1960, Roesser, SAE1962, Sandrarossi, SebastianHelm, Sobia akhtar, SqlPac, Stevag, T0m, Timo, Triwger, Troels
Arvin, Turnstep, WeißNix, Zerksis, Zhenqinli, 107 anonymous edits

Transaction log Source: http://en.wikipedia.org/w/index.php?oldid=575149952 Contributors: Clausen, DGG, Damian Yerrick, Gustronico, Intgr, JCLately, JLaTondre, KeyStroke, Larsinio,
Lupin, Mark Renier, Mikeblas, Mindmatrix, Neoconfederate, Pelister, Poor Yorick, SJP, Sleske, SoledadKabocha, Stolze, Twimoki, 38 anonymous edits

Database trigger Source: http://en.wikipedia.org/w/index.php?oldid=576465806 Contributors: Abdull, Acha11, Adarshramesh, Bevo, BobHindy, Brick Thrower, Bucketsofg, Cadillac, Can't
sleep, clown will eat me, Cedar101, ClamDip, ClanCC, CodeNaked, DanBishop, DanielcWiki, Deineka, Denisarona, Derbeth, Dffgd, Dirkbb, Fizalhaji, Fæ, Grondemar, Gurch, HMSSolent,
Hazard-SJ, Heron, Hu12, Jerome Charles Potts, John of Reading, Jyujin, Knakts, L337 kybldmstr, Larsinio, Lugia2453, M2Ys4U, Magioladitis, Mark Renier, Matinict, Mecanismo, Mike Rosoft,
Mikeblas, Mindmatrix, Minna Sora no Shita, Mlpearc, Mortense, MrOllie, Mschlindwein, NathanBeach, Nickleus, Niteowlneils, Noah Salzman, Noelweichbrodt, PaD, Pimlottc, Pinethicket,
RJFJR, Ramkrish, Reedy, Rimonon, Ross Fraser, Rsrikanth05, S.K., Sae1962, Sampsonvideos, Sippsin, SluggoOne, Stolze, SuperHamster, Superhilac, Svick, Tlaresch, Troels Arvin, Unordained,
Windofkeltia, Yourbane, Yrithinnd, 295 ,علی ویکی anonymous edits

Database index Source: http://en.wikipedia.org/w/index.php?oldid=577312945 Contributors: 16@r, 31stCenturyMatt, Abolen, Afriza, Antandrus, Apavlo, Arcann, Arleyl, Arny, Atree, Aurlee,
Bezenek, Brian Tvedt, Cander0000, Carmichael, Ccare, Ceyockey, Chamoquemas, Chire, ChrisGualtieri, CloudNine, ColinFrayn, Comps, Cybercobra, DJPohly, Dainis, Danlev, Deon Steyn,
Dionyziz, Dominiktesla, Dougher, Drewnoakes, Dvik, Echawkes, Ercanyuz, ErikHaugen, Euryalus, Excirial, Flewis, Flyer22, Flyrev, Focus22, Furrykef, Gaur1982, Gergie, Glacialfox, Gnaaye,
GordonFindlay, Groffg, Groves.w, Gwyant, InShaneee, Interiot, Intgr, JCLately, Jadecristal, Jamesjiao, Jasimab, Jerryji1976, Jfroelich, Jim Carnicelli, Jivadent, Jlehew, JohnF1980, Jon Awbrey,
Jschnur, Jspashett, Jwchong, Kayau, KnightRider, Kuru, Larsinio, Leuko, Lfstevens, Lsschwar, Mabuali, Machadoman, MahSim, Manishkarwa, Mark Renier, MarkusWinand, Mereman,
Mets501, Mike Rosoft, Mindmatrix, Morfeuz, Movses, MrOllie, Mxcatania, Müslimix, NGPriest, Nahoo, NellieBly, Nepenthes, NicDumZ, Nicolas1981, Norm mit, Oxymoron83, P21n7,
Pawanjain19, Pietrow, Planetneutral, Ppntori, Radagast83, Raypereda, Rich Farmbrough, Rl, RobSimpson, Ruzihm, S.K., Salvio giuliano, Samroar, Samson ayalew, Sandgem Addict, Sbisolo,
Searcherfinder, Sideswipe091976, SimonP, Sippsin, Sleske, SpaniardGR, SpeedyGonsales, Stefan Udrea, Stegop, THEN WHO WAS PHONE?, Taka, The Thing That Should Not Be, Tide rolls,
Tommy2010, Triddle, Turnstep, TutterMouse, Vacio, Wbm1058, Wikiwikithe3rd, William Avery, Woohookitty, X7q, Yalckram, Yamaguchi先 生, Zhenqinli, 469 anonymous edits

Stored procedure Source: http://en.wikipedia.org/w/index.php?oldid=574743100 Contributors: 0goodiegoodie0, 3Jane, Aaadamaa, Abdull, Aleenf1, Amaury, Andreas Kaufmann,
Andy.ruddock, Aravind V R, AvicAWB, Avé, Berny68, Bevo, BobHindy, Bobo192, Bovineone, Brenan99, Brianray, Calane83, Cedear, ChristopherGautier, ClementSeveillac, Coachbudka,
Cww, DVdm, Dcoetzee, Derbeth, Dogsgomoo, Dougher, Drake Redcrest, Dreamofthedolphin, Duster.Cleaner, EdgeOfEpsilon, Elockid, EvanCarroll, EvanSeeds, Farazbs20, Favonian, Flashspot,
Frap, Frecklefoot, Fred Bradstadt, Friendlydata, Gambhava, GoldenTorc, Graham87, GregorB, Harryboyles, Homestarmy, Honeplus, Hu12, IO Device, Ichimonji10, Izogi, JCLately, Jay,
Jeffreyarcand, Jeltz, Jim1138, Jogloran, KeyStroke, Kmsimon, Kuru, Kvdveer, Kyledmorgan, Larsinio, Lewissall1, Lights, Luckypayal, M4gnum0n, MER-C, Mariolina, Markblue, Marr75,
Martincamino, Materialscientist, Matticus78, Mayur, Merbabu, Michael@nosivad.com, Mikeblas, Mikesheffler, MilerWhite, Mindmatrix, Mitchandsherri, Modster, Moe Epsilon, MrJones,
MrOllie, Mschlindwein, NYCDA, Neilc, Nickdc, Nsaa, Ohiostandard, Pedro, Petersap, Pinethicket, Pravs, Primalmoon, Pseudonym, Rajeearul, Red Thrush, Regani, RevRagnarok, Rich
Farmbrough, Riki, Rror, Rythie, S.Örvarr.S, Sava chankov, Scadavidson, Scgtrp, Sdorrance, SimonP, Sippsin, Sqlinfo, Stevietheman, Stolze, SymlynX, Taeshadow, Thumperward, Tijfo098,
Tobias Bergemann, Troels Arvin, Unyoyega, Velella, Winston Chuen-Shih Yang, Xenium, Xzilla, Zhenqinli, Σ, 440 anonymous edits

Cursor (databases) Source: http://en.wikipedia.org/w/index.php?oldid=577352465 Contributors: Abdull, Abi79, Agujero Negro, Aitias, Alik Kirillovich, BlastOButter42, Catgut, Cedar101,
Christian75, Cwolfsheep, Danielx, DarkFalls, Darth Panda, DigitalEnthusiast, Dmccreary, Doug Bell, Ejdzej, Epbr123, Feder raz, Ffu, Fieldday-sunday, Greenrd, Habitmelon, Haleyga, Hutcher,
Ilyanep, Ivantalk, Jamestochter, Janigabor, Jerome Charles Potts, Justinc, Kamots, Kubieziel, Larsinio, Mark Renier, Mikeblas, Mindmatrix, Miten.morakhia, MrOllie, Mwtoews, Nagae,
NawlinWiki, NeonMerlin, NewEnglandYankee, OsamaK, PhilHibbs, Primalmoon, RHaworth, RandyFischer, Reedy, Richi, S.K., S.Örvarr.S, Sachzn, SarekOfVulcan, SimonP, Sippsin,
SkyWalker, Stolze, Tbannist, TechTony, Tobias Bergemann, Underpants, Wallie, Winston Chuen-Shih Yang, Wjasongilmore, Wknight94, Xiphoris, 92 anonymous edits

Partition (database) Source: http://en.wikipedia.org/w/index.php?oldid=577826075 Contributors: Alai, Andrew.rose, Andy Dingley, Angusmca, Beaddy1238, Brian1975, Ccubedd, Ceva,
Doubleplusjeff, Drrngrvy, Ehn, Fholahan, Foonly, Geoffmcgrath, Georgewilliamherbert, Habitmelon, Highflyerjl, Isheden, Jamelan, Jan.hasller, Jonstephens, Lurkfest, Mark Renier,
Materialscientist, Mdfst13, Mikeblas, Mindmatrix, MrOllie, Peak, Pinkadelica, S.K., Salobaas, Semmerich, SmallRepair, Stevelihn, Vishnava, Wordstext, Yahya Abdal-Aziz, 42 anonymous edits

Concurrency control Source: http://en.wikipedia.org/w/index.php?oldid=550119263 Contributors: 2GooD, Acdx, Adrianmunyua, Augsod, Bdesham, Brick Thrower, CanisRufus, CarlHewitt,
Christian75, Clausen, Comps, Craig Stuntz, Cyberpower678, DavidCary, Furrykef, Gdimitr, GeraldH, JCLately, Jesse Viviano, Jirislaby, John of Reading, JonHarder, Jose Icaza, Karada,
KeyStroke, Kku, Leibniz, M4gnum0n, Magioladitis, Malbrain, Mark Renier, Mgarcia, Mindmatrix, Miym, N3rV3, Nealcardwell, Nguyen Thanh Quang, Peak, Poor Yorick, Reedy, Rholton,
Ruud Koot, Siskus, Smallman12q, The Anome, Thingg, Thoreaulylazy, Tikuko, TonyW, Touko vk, Tumble, Victor falk, Vincnet, Wbm1058, Wikidrone, YUL89YYZ, 87 anonymous edits

Data dictionary Source: http://en.wikipedia.org/w/index.php?oldid=564190594 Contributors: Aednichols, Ajdlinux, AlistairMcMillan, Aluion, Andreas Kaufmann, Awis, Barek, BozMo,
Bubba hotep, ChrisGualtieri, Cybercobra, DEddy, Dan100, Daniel5127, Daswani.Amit, Davnor, DePiep, Dekisugi, Dicklyon, Dmccreary, Floweracre, Friendlydata, Gilliam, Gioto, Giso6150,
Gobbleswoggler, Hadal, Ham Pastrami, Hardyplants, Haymaker, Helwr, Hooperbloob, Icey, Immunize, Iridescent, Jacobko, Jaksckajwsb, Jamelan, Jeff3000, JeffTan, Joelemaltais, Joinarnold,
Jwissick, Karada, Ketiltrout, KeyStroke, Kku, Klaun, Lauri.pirttiaho, M.r santosh kumar., Mark Renier, MarkDWikiUser, Materialscientist, MaxHund, Maziotis, Mdd, Mentifisto, Michael Hardy,
Mindmatrix, Mushroom, N1RK4UDSK714, Olaf Davis, Omicronpersei8, PartyDude!, Pavel Vozenilek, Perrydegner, Pnm, RattusMaximus, RayGates, Rettetast, Riana, Rich Farmbrough,
RickBeton, Shadowjams, Sprachpfleger, Sstrader, The Thing That Should Not Be, TheParanoidOne, Thetorpedodog, Tigerente, Ttwaring, Veyklevar, Violetriga, Wireless friend, Woohookitty,
Xphile2868, Xxsquishyxx, Zondor, Тне ежесабботочно, Филатов Алексей, 152 anonymous edits

Java Database Connectivity Source: http://en.wikipedia.org/w/index.php?oldid=576879686 Contributors: AS, Abdull, Andreas Kaufmann, Andrewman327, Arcann, Atozjava, Audriusa,
Beetstra, Bkrakesh, Blaine-dev, Brick Thrower, Bunnyhop11, CambridgeBayWeather, Cameltrader, Cander0000, Caomhin, Captmjc, Cherkash, Chowbok, ChrisGualtieri, Chrismacgr, Coldacid,
Danim, Darth Molo, Dddelfin, Derbeth, Dinosaurdarrell, DivideByZero14, Doug Bell, Drewgut, Edward, Ehheh, Ehn, Elandon, Elaz85, Eumolpo, Evgeni Sergeev, Explanator, FOOL,
Faisal.akeel, Ferengi, Ferrans, Fikus, Forage, Frecklefoot, Fred Bradstadt, Fuhghettaboutit, Fyyer, GLumba, GraemeL, Graham87, GreyCat, Harryboyles, Iain.dalton, Insomnia64, JDvorak,
JLaTondre, Jacks435, Jameboy, Jay, Jems421, JeremyStein, Jeronimo, Jjaazz, Joffeloff, Josepant, Josephw, Julesd, Katieh5584, Kaydell, KingsleyIdehen, Klausness, Lenaic, Leszek4444,
M4design, M4gnum0n, MER-C, MacTed, Mark Renier, Materialscientist, MeltBanana, Mindmatrix, Mintleaf, Moribunt, MrOllie, Nlevitt, Noq, Pako, Pillefj, Pinecar, Pinkyf, Piojo, Pne, Poor
Yorick, Praslisa, Ravenmewtwo, RedWolf, Reedy, Rm1507, SJK, Sae1962, Schw3rt, Sfmontyo, ShaunMacPherson, Simran.preet90, Sjc, SmackEater, Sohail.sikora, Sqlinfo, Srecd, Sualeh,
Supreme geek overlord, Tcncv, The Anome, The Aviv, Theresa knott, Tom 99, Twsx, Unclejedd, Warren, Wikipelli, Winterst, Yaniv Kunda, Yaxh, Zundark, Дарко Максимовић, 何 少 仪, 219
anonymous edits

XQuery API for Java Source: http://en.wikipedia.org/w/index.php?oldid=572931513 Contributors: A5b, Bgwhite, Bxj, Codename Lisa, F331491, Frap, Gurt Posh, Klemen Kocjancic, Mhkay,
Protonk, RHaworth, Vegaswikian, Yutsi, 23 anonymous edits

ODBC Source: http://en.wikipedia.org/w/index.php?oldid=566327529 Contributors: AKGhetto, AdventurousSquirrel, AlistairMcMillan, Allens, Andreas Kaufmann, AndriuZ, Andy Dingley,
Arch dude, Auric, AvicAWB, Avé, Beevvy, Bigpru, BobGibson, BonsaiViking, Borgx, Bovineone, BryEllis, Bunnyhop11, Cander0000, CanisRufus, Canterbury Tail, Charlesgold, Chealer,
ClaudioSantos, Computafreak, Craig Stuntz, DFulbright, Danim, David Gerard, Derbeth, Discospinster, Dittaeva, DragonHawk, Drewgut, Eglobe55, Electrolite, Epim, Everlasting Winner, Gcm,
GreyCat, Gwern, Harry Wood, Inzy, Irish all the way, JLaTondre, Jandalhandler, Jay, Jerome Charles Potts, Jkelly, Jklowden, John of Reading, JonathanMonroe, KeyStroke, KingsleyIdehen,
Kuru, Kyouteki, Kzafer, Larsinio, Lkstrand, Lowellian, Lurcher300b, MacTed, Magnus.de, Manop, Mark Renier, Markhurd, Martijn Hoekstra, Materialscientist, Maury Markowitz,
Maximaximax, MeltBanana, Michael Hardy, Mikeblas, Mindmatrix, Minesweeper, Minghong, Mintleaf, Misog, Mitsukai, NapoliRoma, Nikos 1993, Nixdorf, NoahSussman, Not Sure, Orlady,
Orpheus, Oxda, Pajz, Paul Foxworthy, Pedant17, Pmsyyz, Polluks, Power piglet, PrisonerOfIce, Quuxa, Raffaele Megabyte, Rajkumar9795, Reconsider the static, Reedy, RenniePet, Rjwilmsi,
Rrabins, Seanwong, Sega381, Spellmaster, Sspecter, Struway, Swhalen, The Anome, The wub, Thumperward, Tide rolls, Tin, Todorojo, TommyG, Viridae, Wez, Whpq, Wikipelli, William
Avery, Winterst, Woohookitty, Ysangkok, Yug1rt, Хаш-Эрдэнэ, 231 anonymous edits

Query language Source: http://en.wikipedia.org/w/index.php?oldid=575926344 Contributors: ASHPvanRenssen, Adarw, Ahoerstemeier, Ahunt, Albert688, Amin Hashem, AmirMehri,
AndrewWarden, BCable, Bacchus123, Beaton1131, BenAveling, Bkonrad, Chtirrell, CxQL, DEng, Danakil, Danim, Davidfstr, Deepugn, Devourer09, Diamondland, ERfan111, Edward,
Ehajiyev, Elwikipedista, Face, Frieda, Groovenstein, Grutness, HanielBarbosa, Honys, Ihenriksen, Inverse.chi, IvanLanin, Jay42, Joerg Kurt Wegner, John Vandenberg, John of Reading,
Jonathan.mark.lingard, KeyStroke, Kwiki, Larsinio, Logiphile, MarXidad, Mark Arsten, Mark Renier, Markhobley, Mgreenbe, Mhkay, MichaelSpeer, Mild Bill Hiccup, Msnicki, NGC 2736,
Nikola Smolenski, Ojigiri, OsamaK, Peter Gulutzan, Retireduser1111, Rfl, SarekOfVulcan, Shekhardtu, Slipstream, Soumyasch, Srandrews, Steven Walling, Svick, Tassedethe, Techno.modus,

Article Sources and Contributors 238

Throbblefoot, TommyG, Toussaint, Trevor MacInnis, Troels Arvin, Usien6, Valafar, Vanished user qkqknjitkcse45u3, Vmenkov, Wikiolap, Xodlop, ZygmuntKrynicki, 48 anonymous edits

Query optimization Source: http://en.wikipedia.org/w/index.php?oldid=574425789 Contributors: Abdull, Andreas Kaufmann, Andy Dingley, Avalon, Bearcat, Beland, Cadvga, Cedar101,
Danim, Edward, Ginsuloft, Glux, GregorB, Gzuckier, Isulica, JoshRosen, Less Than Free, MBisanz, Mild Bill Hiccup, Mouchoir le Souris, MrOllie, Mrmatiko, Nadeemhussain, Neilc, Owl3638,
Paige Master, Pascal.Tesson, Ronwarshawsky, Sct72, Sudhir h, TechPurism, Vitriden, Walter Görlitz, 24 anonymous edits

Query plan Source: http://en.wikipedia.org/w/index.php?oldid=574422744 Contributors: Aaronbrick, Alpha Quadrant, Ammar.w, Ancheta Wis, Arcann, Bevo, Cedar101, Cww, Freezegravity,
Grace Note, Hardeeps, James barton, Larsinio, Mark Renier, Mbarbier, Mdesmet, Mikeblas, Mindmatrix, Neilc, Nikola Smolenski, Reedy, Rl, Ronwarshawsky, SimonP, Sippsin, Slaniel,
TheParanoidOne, UnitedStatesian, Walter Görlitz, Woodshed, ZoBlitz, 26 anonymous edits

Database administration and automation Source: http://en.wikipedia.org/w/index.php?oldid=575478582 Contributors: Aflorin27, Akerans, Anas2048, Beetstra, Cuttysc, Dabron,
David.lamberth, Dr Gangrene, Drunkenmonkey, Elonka, Ericgross, Hffmgb899, ITautomationFreak, JEH, JaGa, Jamesx12345, Jpbowen, Kjkolb, Kku, Kukushk, MZMcBride, Maahela,
Mwtoews, Oli Filth, Piano non troppo, Pointillist, Qwyrxian, R'n'B, Ronz, Rwwww, Rybec, ShelfSkewed, The Thing That Should Not Be, Theopolisme, Vegaswikian, 64 anonymous edits

Replication (computing) Source: http://en.wikipedia.org/w/index.php?oldid=577000800 Contributors: Artlung, Ashutosh y0078, Autiger, Beland, Bloodshedder, Bsilverthorn, Bsoo,
Daniel7066, David--swenson, Dimos2k, DixonD, Elhaddi, Elsendero, Fabkins, Fairwin99, GFHandel, Giteshtrivedi, Grafen, Hgabri1, Holiwud111, Ian wild, Indeyets, Intgr, Ispabierto, J.delanoy,
Jaksa, Jamelan, Jay, John of Reading, JonHarder, Jsaylor3, Keithathaide, Ken Birman, Klightspeed, Klilidiplomus, Kubanczyk, Kwiki, Leroyvl, Manceraa, MarkusSchiltknecht, Maximaximax,
Mercy11, Mihao2am, Mion, Miym, Momo54, Neilc, NicDumZ, Ohnoitsjamie, Owlsfan, Philipcurrito, Pmedema, Pnm, Psustman, RShohat, Radagast83, Reedy, Ronz, Rror, Ruralhouse,
ScottEvonLewis, Sehwag, Someguy1221, Speculos, TedDunning, Tedickey, TheParanoidOne, Tobias Bergemann, Twimoki, Vincefleming, Wbm1058, Wilee, Winterst, X7q, 104 ,טרול רפאים
anonymous edits

Comparison of object database management systems Source: http://en.wikipedia.org/w/index.php?oldid=568898654 Contributors: Alexandre.Morgaut, Bablind, Beland, Brunov,
CWuestefeld, ChrisGualtieri, Cristiursachi, D aana, Dmytrob, Espresso999, FatalError, Ftiercel, George A. M., Harryboyles, Hu12, Hyspdrt, JGrosmann, JLaTondre, Jarble, Jerome Charles Potts,
Kiore, Knowlengr, Lguzenda, MMSequeira, MacTed, Manfred-jeu, Matspca, Minas.w, Nihiltres, Palosirkka, Pwaddles, R'n'B, Radu124, Rjolly, Sadads, Siaqodb, SpeoLeo, Spolnik,
Svetoslav.Mateev, Talyian, Tekktura, The Founders Intent, Thegreeneman5, Torc2, Uncommon Sense, Woohookitty, Xiloynaha, 109 anonymous edits

Comparison of object-relational database management systems Source: http://en.wikipedia.org/w/index.php?oldid=566897826 Contributors: Akagel, Alexandre.Morgaut, Anas2048, Beland,
Beta m, Calabrese, Chikako, Chris the speller, Christian75, Cigano, Cubridorg, DRady, Donhalcon, Garyzx, Ghp, Gudeldar, JJay, Jeff3000, Jerome Charles Potts, Karnesky, KingsleyIdehen,
Leotohill, Lotje, MER-C, Mark Renier, Minghong, Palosirkka, Pamri, Piano non troppo, Reedy, Requestion, Ruud Koot, Rwwww, Salix alba, Skyezx, Squids and Chips, Versus22, Wmahan, 19
anonymous edits

List of relational database management systems Source: http://en.wikipedia.org/w/index.php?oldid=572498598 Contributors: *drew, 2A00:FE00:BFFE:2201:0:0:0:400, AaaghItsMrHell,
Adamblang, Adrian J. Hunter, AlistairMcMillan, Alureiter, Amalthea, Anas2048, Arcann, Armadillo ECM, Armen1304, Baojia, Basil.bourque, Beland, BoxSoft, Bp0, Bressan,
CasperGoodwood, Cburnett, Cgfdmc, ChandraASGI, CharlieTesta*24, Closedmouth, Countersubject, CovenantD, Craig Stuntz, Crosbiesmith, Cubridorg, DEddy, DRady, Darren Duncan,
DatabACE, Davidsheiman, Dbaxter0, DerHexer, Dfetter, Dougbertram, Eeekster, Einarkristjan, Ekraft, Elf, Fraise, Fschupp, Ggeldenhuys, Glange90411, Greenrd, Grstain, Gsingh, HJ Mitchell,
HappyCamper, Herostratus, Hertzsprung, Igloobone, Imroy, Jam02, JasonThePirate, Jberkus, Jerome Charles Potts, JethroElfman, Jimgawn, Jimmi Hugh, JohnGray, JohnnyMrNinja,
Jonasfagundes, Jost Riedel, Jpetersen74, Jtdunlop, Karnesky, KingsleyIdehen, Kognitio, Kriplozoik, Leandrod, Legolas558, Lfstevens, Lowellian, Lpetrazickis, Luke Lonergan, MainFrame,
Mark Renier, Markoprima, MarylandArtLover, Mcaisse, Mekong Bluesman, Mikeblas, Mindmatrix, Minghong, MrBoo, Mrozlog, Mtasic, Neilrieck, Ngpd, Nick Number, Nicolas1981,
Niteowlneils, Ocherkashin, OlivierWeb, Paul A, Pelagius333, Pengo, Pgillman, Pjrm, Prolog, Pwinkler4185, Radagast83, Ramanna.Sathyanarayana, Rcorcs, Reedy, Requestion, Rich
Farmbrough, Ross Burgess, Rrabins, Ryandaum, Sappy, ScottDavis, Sergsav, Snarius, Sqlinfo, StevenBlack, Stuboy, Sushi500, Syrthiss, Ted nw, Tehnic49, Tentinator, Thomashilbert, Thryduulf,
TommyG, Troels Arvin, Tstevelt, Turnstep, Vmatikov, Vtbl, W163, WOSlinker, Waw2010, Whouk, Wikiolap, Williamtimm, Zimbabwer, 177 anonymous edits

Comparison of relational database management systems Source: http://en.wikipedia.org/w/index.php?oldid=577589864 Contributors: 2A00:FE00:BFFE:2201:0:0:0:300,
2A00:FE00:BFFE:2201:0:0:0:400, 90, 96cores, A5b, Abu badali, Adono, Aeriform, Agavenwurm, Akagel, Alexandre.Morgaut, Alvaro.Monge, Analoguedragon, Anas2048, AndrewCowie,
Angoca, Astral v, Axelstudios, Az29, BBCWatcher, Basil.bourque, Beetstra, Beland, Beta m, Bezik34, Bgwhite, Bigown, Bjkeefe, BlackCatN, Bmfrosty, Bogdangiusca, Brick Thrower, Brierand,
Brookie, Brulath, CCFS, CRAIZ3D, Calador109, Carp3, Cazito, Ceaton55, Chachka, Chendy, Cheolsoo, Chris the speller, Chriskl, Cjcollier, Clanie, ClementSeveillac, Clieu, Comp.arch,
Coolboy1234, Corrado, CovenantD, Craig Stuntz, Cubridorg, Curps, DanBishop, DancingMan, Danmcg.au, Dark ixion, Darthsco, DavidMCEddy, Davidsheiman, DeTru711, DeirdreGerhardt,
Dfetter, Dionyziz, DocendoDiscimus, Donhalcon, Dougdp, DrThompson, Drilnoth, Duckbill, Dveeden, Dvgeorge, Ean5533, Edward, Eli lilly, Equalizer777, EvanCarroll, Findling67,
Fivelittlemonkeys, Fixesfixes, Florian Sening, Fonsie, Frap, Fratrep, Fredrik, Gbgsimulationjon, Gcalis, Gczffl, Geordee, Georgeryp, Gilad.maayan, Gintsp, Gkanel, Glange90411, Glmeece,
Gmaxwell, Goeldner, Gogo Dodo, Gongshow, Greenman, GreyCat, Gudeldar, Guerrabraga, HHempelmann, HappyCamper, HarrisonFisk, Hasegeli, Hibethy, Hrgwea, Hu12, Hz.tiang, Igloobone,
Improv, Imroy, Indexheavy, Inessa4ever, Intgr, Isaac Sanolnacov, JJay, JLaTondre, Jamesday, Jawsper, Jberkus, Jbicik, Jeltz, Jerome Charles Potts, Jethro555, Jevansen, Jhonjairoroa87,
Jim.Callahan,Orlando, Jin.Takahashi, Jmachat, Jmnbatista, Jojalozzo, Jon207, Jot1109, Jpupier, Judyburk, Juha001, Kadishmal, Kaelfischer, Karnesky, Kayvee, Keldar, Kempeth, Kenfar, Kent
Heiner, KingsleyIdehen, KiwiBiggles, Kmorozov, Kognitio, Kozmando, Kweetal, Kweetal nl, Kytti khat, LHCgrp, LarsHolmberg, Larsinio, Latios, Leandrod, Leandrpf, Lfstevens, Lguzenda,
LiX, Lightblade, Lmxspice, Lowellian, Lowmeus, Lucas Malor, Lzcubs1, M Th vat, Maarten Hermans, MacTed, Maheshgadgil, Manifoldtop, Maple10, Mariuz, Mark Renier, Marklark,
MeekMark, Mhagman, Mikeblas, Mikluce, Mindmatrix, Minghong, Misery, Mo ainm, Moocha, Moralis, MrBoo, Mtasic, Mwtoews, Mywikie, Mìthrandir, NaibStilgar, NapoliRoma, Naraht,
Narendra Sisodiya, Naviworx, Ne0Freedom, Neilc, Ngpd, Nhantdn, Nickdc, Niqueco, Niteowlneils, Nodulation, Noonand, Noxia, OKIsItJustMe, Odinblade, Ofbarea, Olivier Debre, PCJockey,
Patheticcockroach, PentoMcGreno, Peterl, Petri Krohn, Pgan002, PhilHorder, PieterDeBruijn, Plesatejvlk, Plumcreek, Pnv82, Proofreader77, Pvjohnson, Pwsegal, Quebec99, Radagast83,
Radio15dude, RandalSchwartz, RaniaSOUSSI, Reedy, Reisio, Rhaas, Rhobite, Rich Farmbrough, RickBeton, Rimio, Rjwilmsi, Robert K S, Rsocol, Rudi.Leibbrandt, Rupert160, Ruud Koot,
Ryguasu, S.K., SDSWIKI, SLi, Seashorewiki, Sehbueno, Shenme, Shusseina, Sietse Snel, SixSkys, Slaweks, Slyzius, Snarius, Snarpel, Soeren1611, Sqlboy, Sqlinfo, Stephenw32768, Stuboy,
TRauMa, Tabletop, Taichi, TallMagic, Tarjei Knapstad, Taylorsharpemac, TechPurism, Tedmcneal, Terfilo, Tfischbeck, Tharakan, The Anome, ThomasMueller, Thunderbird2, Thunderbritches,
TimTay, Timwi, Tlaresch, TobiasPersson, TommyG, Tranemonet, Troels Arvin, Turanyuksel, Turnstep, Udittmer, Ukuechle, Unicard-ic, Veliscu Ovidiu, Victorwss, Vincenzo.romano, Vrenator,
W3bbo, WOSlinker, Waldir, Waveform, Waw2010, Waynelwarren, WereSpielChequers, Whimsley, Wielewaal, Wikirosi, Wild Pansy, Will henderson, William Avery, Williamtimm, Wiml,
Wmahan, Woohookitty, Wtuvell, Xpclient, Xprotocol, Yourbane, Yukuku, Yzchang, Zero0w, Zollhausring, Zsoltika, М И Ф, 927 anonymous edits

Document-oriented database Source: http://en.wikipedia.org/w/index.php?oldid=574142205 Contributors: Altered Walter, Antony.stubbs, Argv0, Arthena, Bablind, BrideOfKripkenstein,
Bunnyhop11, Bxj, CJGarner, Cbuccella, Cedar101, Chris Wood, ChristianGruen, Cobaltbluetony, Compfreak7, Crosstantine, Cybercobra, Danim, Danmcg.au, Dasfrosty, Dm, Dmccreary,
Dodilp, Edward, Ehn, Enric Naval, EricBloch, FatalError, Frap, FreeRangeFrog, Goldzahn, Gwicke, Hzguo, Imroy, Iznogoud, JIP, Jerome Charles Potts, Jwoodger, Kingsleyj, Kirt, Lodrian,
Mark Arsten, Mark Renier, Mbroberg, Mdd, Mindmatrix, Mortense, Mqchen, MySchizoBuddy, Neitherk, Niceguyedc, Nikhil Umesh, Nwbeeson, Pcap, Philu, Plamoa, Plasma east, Pointillist,
QuiteUnusual, R'n'B, Rachkovsky, Rediosoft, Refactored, Rfl, Rtweed1955, SDSWIKI, Spdegabrielle, Stuartyeates, Superjordo, Thorwald, Thumperward, Toutoune25, Tsm32, Woohookitty, 105
anonymous edits

Graph database Source: http://en.wikipedia.org/w/index.php?oldid=577575136 Contributors: 0x24a537r9, 2001:18E8:2:1031:50C:3655:857A:F9BB,
2001:818:D916:2200:61FD:4BE7:E6C4:2855, 2001:858:5:201:65C0:B01F:1C0D:B10E, 2A01:E35:2E41:7720:9D1:92AE:1786:6B9B, 4368a, Agavenwurm, Aglnl, Ahzf, Ajmagnifico,
Aldonline, Andrearatto, Bolerio, Bunnyhop11, Cnorvell, Colinniu, Crcsmnky, DamarisC, Danim, Dreamingxk89, E40, Egbert J. van der Haring, Electro rick, Elykahn1, Espeed, Fceller, Ffangs,
Fraktalek, Frap, Freshnfruity, Germanviscuso, Giftlite, J12t, JakobVoss, Jmesney, Jncraton, Jni, Jonik, Kiryakov ak, Ksinkar, Lambdazen, Lesser Cartographies, Lguzenda, Lillem4n, Luebbert42,
Luisbargu, MacTed, Magnuschr, Materialscientist, Miami33139, Michael A. White, MoSarwat, Morphh, MuffledThud, Nawroth, Pelister, Pereb, Pholding, Pointillist, Ppr15, Praveensripati,
ProfessorBaltasar, RecaiAlkan, RichMorin, SamJohnston, Sbrunner, Shengqiyang, Starboy8, Stott.parker, Stybn, Syhuang1988, TTJDenman, TempestSA, Tgrota, Thinxer, Thomas888b,
Thoughtpuzzle, Tsm32, Tuhl, Wbeaureg, Yanivby, 126 anonymous edits

NoSQL Source: http://en.wikipedia.org/w/index.php?oldid=577845207 Contributors: (:Julien:), 2001:980:259E:1:B121:272F:7400:3B6D, 2A02:810D:12C0:4B:5C1A:6342:A931:F78B,
Adtadt, Al3xpopescu, Alexandre.Morgaut, Alexrakia, AlisonW, Altered Walter, Amire80, Anastrophe, AndrewBass, Angry bee, Anilkumar1129, Anoop K Nayak, Ansh.prat, Anujsahni, Argv0,
Arjayay, Arto B, Asafdapper, Ashtango, Ashtango5, Atropos235, AxelBoldt, BD2412, Bbulkow, Bdijkstra, Bearcat, Beland, Benatkin, Benhoyt, Bhaskar, Billinghurst, Biofinderplus, Boshomi,
Bovineone, Bramante, Brocsima, CJGarner, CaptTofu, Ceefour, Cekli829, Charbelgereige, Chenopodiaceous, ChristianGruen, Ciges, Clemwang, Cloud-dev, Cnorvell, ColdShine, Coldacid,
Compfreak7, Corrector623, Craigbeveridge, Crosbiesmith, Crosstantine, Cybercobra, Cyril.wack, DBigXray, Dabron, DamarisC, Dancrumb, DatabACE, DavidBourguignon, DavidSol,
Davidhorman, Dawn Bard, Dericofilho, Dewritech, Dm, Dmccreary, Dmitri.grigoriev, Dredwolff, Drttm, Dshelby, Dstainer, Duncan, Ebalter, Eco schranzer, Edlich, Ehn, Electricmuffin11, Eno,
EricBloch, ErikHaugen, Ertugka, Euphoria, Excirial, Extrovrt101, F331491, Farvartish, Fiskbil, Fitzchak, Fmorstatter, FontOfSomeKnowledge, Fraktalek, FranzKraun, Frap, Freshnfruity, Frze,
Furrykef, Fxsjy, Gaborcselle, Gadfium, Germanviscuso, Getmoreatp, GimliDotNet, Ginsuloft, Gkorland, GlobalsDB, GoingBatty, Gonim, Gorman, Gpierre, GraemeL, Griswolf, Gstein, Hairy
Dude, Harpreet dandeon, Headbomb, Heelmijnlevenlang, Hloeung, Hoelzro, Hu12, Inmortalnet, Intgr, Irmatov, JLaTondre, Jabawack81, Jandalhandler, Jasonhpang, Javalangstring, Jeffdexter77,
Jerome Charles Potts, JnRouvignac, Jnaranjo86, JohnPritchard, Jonasfagundes, Joolean, Jottinger, Jrudisin, Jstplace, Jubalkessler, Justinsheehy, Kbrose, Kgfleischmann, Khiladi 2010, Ki2010,
KiloByte, Kkbhumana, Kku, Knudmoeller, Koavf, Komap, Korrawit, LeeAMitchell, Leegee23, Legacypath, Leotohill, Lfstevens, Lguzenda, Linas, Lmxspice, Looris, Luebbert42, Luisramos22,
Lyoshenka, MMSequeira, Mabdul, MacTed, Magnuschr, ManikSurtani, Marasmusine, Mark Arsten, Matspca, Matt Heard, Mauls, Mauro Bieg, Maury Markowitz, Mbarrenecheajr, Mbonaci,
Mbroberg, McSly, Mesut.ayata, Mhegi, Miami33139, Mitpradeep, Mjresin, Morphh, Mortense, MrOllie, MrWerewolf, Msalvadores, Mshefer, Mtrencseni, Mydoghasworms, Nanolat,

Article Sources and Contributors 239

Natishalom, Nawk, Nawroth, Netmesh, Neustradamus, Nick Number, Nileshbansal, Nosql.analyst, Ntoll, OmerMor, Omidnoorani, Orenfalkowitz, Ostrolphant, PatrickFisher, Pcap, Peak, Pereb,
Peter Gulutzan, Phillips-Martin, Philu, Phoe6, Phoenix720, Phunehehe, Plustgarten, Pnm, Poohneat, ProfessorBaltasar, QuiteUnusual, Qwertyus, R39132, RA0808, Rabihnassar, Raysonho,
Razorflame, Really Enthusiastic, Rediosoft, Rfl, Robert1947, RobertG, Robhughadams, Ronz, Rossturk, Rpk512, Rtweed1955, Russss, Rzicari, Sae1962, Sagarjhobalia, SamJohnston,
Sandy.toast, Sanspeur, Sasindar, ScottConroy, Sdrkyj, Sduplooy, Seancribbs, Seraphimblade, Shadowjams, Shepard, Shijucv, Smyth, Socialuser, Somewherepurple, Sorenriise, Sstrader,
StanContributor, Stephen Bain, Stephen E Browne, Steve03Mills, Stevedekorte, Stevenguttman, Stimpy77, Strait, Syaskin, TJRC, Tabletop, Tagishsimon, Techsaint, Tedder, Tgrall, The-verver,
Theandrewdavis, Thegreeneman5, Thomas.uhl, ThomasMueller, Thumperward, ThurnerRupert, Thüringer, Timwi, Tobiasivarsson, Tomdo08, Trbdavies, Tshanky, Tsm32, Tsvljuchsh, Tuvrotya,
Tylerskf, Ugurbost, Uhbif19, Vegaswikian, Violaaa, Viper007Bond, Volt42, Voodootikigod, Vychtrle, Walter Görlitz, Wavelength, Weimanm, Whimsley, White gecko, Whooym, William
greenly, Winston Chuen-Shih Yang, Winterst, Woohookitty, Wyverald, Xtremejames183, YPavan, Zapher67, Zaxius, Zond, Милан Јелисавчић, 654 anonymous edits

NewSQL Source: http://en.wikipedia.org/w/index.php?oldid=577827531 Contributors: Akim.demaille, Amux, Apavlo, Beland, Brianna.galloway, Diego diaz espinoza, Ibains, Intgr, Julian
Mehnle, MPH007, MacTed, Maury Markowitz, MrOllie, Mwaci99, Plothridge, Quuxplusone, Stuartyeates, UMD-Database, 12 anonymous edits

Image Sources, Licenses and Contributors 240

Image Sources, Licenses and Contributors
File:CodasylB.png Source: http://en.wikipedia.org/w/index.php?title=File:CodasylB.png License: Creative Commons Attribution-ShareAlike 3.0 Unported Contributors: Jean-Baptiste
Waldner, User:Jbw
Image:Relational key.png Source: http://en.wikipedia.org/w/index.php?title=File:Relational_key.png License: Public Domain Contributors: LionKimbro
File:Database models.jpg Source: http://en.wikipedia.org/w/index.php?title=File:Database_models.jpg License: Creative Commons Attribution-Sharealike 3.0 Contributors: Marcel Douwe
Dekker
Image:A2 2 Traditional View of Data.jpg Source: http://en.wikipedia.org/w/index.php?title=File:A2_2_Traditional_View_of_Data.jpg License: Public Domain Contributors: itl.nist.gov
Image:Flat File Model.svg Source: http://en.wikipedia.org/w/index.php?title=File:Flat_File_Model.svg License: Public Domain Contributors: Wgabrie (talk) 16:48, 13 March 2009 (UTC)
Image:Hierarchical Model.svg Source: http://en.wikipedia.org/w/index.php?title=File:Hierarchical_Model.svg License: Public Domain Contributors: U.S. Department of Transportation
vectorization:
Image:Network Model.svg Source: http://en.wikipedia.org/w/index.php?title=File:Network_Model.svg License: Public Domain Contributors: U.S. Department of Transportation vectorization:
File:Emp Tables (Database).PNG Source: http://en.wikipedia.org/w/index.php?title=File:Emp_Tables_(Database).PNG License: Public Domain Contributors: Jamesssss
Image:Object-Oriented Model.svg Source: http://en.wikipedia.org/w/index.php?title=File:Object-Oriented_Model.svg License: Public Domain Contributors: U.S. Department of
Transportation vectorization:
File:Update anomaly.svg Source: http://en.wikipedia.org/w/index.php?title=File:Update_anomaly.svg License: Public Domain Contributors: Nabav,
File:Insertion anomaly.svg Source: http://en.wikipedia.org/w/index.php?title=File:Insertion_anomaly.svg License: Public domain Contributors: en:User:Nabav, User:Stannered
File:Deletion anomaly.svg Source: http://en.wikipedia.org/w/index.php?title=File:Deletion_anomaly.svg License: Public domain Contributors: en:User:Nabav, User:Stannered
File:Referential integrity broken.png Source: http://en.wikipedia.org/w/index.php?title=File:Referential_integrity_broken.png License: GNU Free Documentation License Contributors:
en:User:Ta bu shi da yu
Image:Relational database terms.svg Source: http://en.wikipedia.org/w/index.php?title=File:Relational_database_terms.svg License: Public Domain Contributors: User:Booyabazooka
File:Relational Model.svg Source: http://en.wikipedia.org/w/index.php?title=File:Relational_Model.svg License: Public Domain Contributors: U.S. Department of Transportation
vectorization:
File:Relational key.png Source: http://en.wikipedia.org/w/index.php?title=File:Relational_key.png License: Public Domain Contributors: LionKimbro
File:Relational model concepts.png Source: http://en.wikipedia.org/w/index.php?title=File:Relational_model_concepts.png License: GNU Free Documentation License Contributors:
User:AutumnSnow
File:Object-Oriented Model.svg Source: http://en.wikipedia.org/w/index.php?title=File:Object-Oriented_Model.svg License: Public Domain Contributors: U.S. Department of Transportation
vectorization:
File:Db null.png Source: http://en.wikipedia.org/w/index.php?title=File:Db_null.png License: GNU Free Documentation License Contributors: User:SqlPac
File:XQJ-Architecture.svg Source: http://en.wikipedia.org/w/index.php?title=File:XQJ-Architecture.svg License: GNU Free Documentation License Contributors: F331491
File:Storage replication.png Source: http://en.wikipedia.org/w/index.php?title=File:Storage_replication.png License: Creative Commons Attribution-Sharealike 3.0 Contributors:
User:Speculos
File:GraphDatabase PropertyGraph.png Source: http://en.wikipedia.org/w/index.php?title=File:GraphDatabase_PropertyGraph.png License: Creative Commons Zero Contributors:
User:Obersachse

License 241

License
Creative Commons Attribution-Share Alike 3.0
//creativecommons.org/licenses/by-sa/3.0/

