
SQL MOST IMPORTANT CONCEPTS-PART 1 HIMANSHU KUMAR

 pg. 1 | HIMANSHU KUMAR (LINKEDIN)

SQL- MOST IMPORTANT CONCEPTS

PLACEMENT PREPARATION

[EXCLUSIVE NOTES]

[SAVE AND SHARE]

Curated By- HIMANSHU KUMAR(LINKEDIN)

TOPICS COVERED-

PART-1 :-

➢ SELECT Query In SQL

➢ Distinct Clause In SQL

➢ INSERT INTO Query In SQL

➢ INSERT INTO Statement In SQL

➢ DELETE Statement In SQL

➢ UPDATE Statement In SQL

➢ SELECT TOP Clause In SQL

➢ ORDER BY In SQL

➢ Aliases In SQL

➢ Wildcard operators In SQL

➢ Join (Inner, Left, Right and Full Joins)

➢ CREATE In SQL

HIMANSHU KUMAR(LINKEDIN)

https://www.linkedin.com/in/himanshukumarmahuri

SQL MOST IMPORTANT CONCEPTS-PART 1 HIMANSHU KUMAR

 pg. 2 | HIMANSHU KUMAR (LINKEDIN)

SELECT Query :-

Select is the most commonly used statement in SQL. The SELECT
Statement in SQL is used to retrieve or fetch data from a database. We
can fetch either the entire table or according to some specified rules.
The data returned is stored in a result table. This result table is also
called result-set.

With the SELECT clause of a SELECT command statement, we specify
the columns that we want to be displayed in the query result and,
optionally, which column headings we prefer to see above the result
table.

The select clause is the first clause and is one of the last clauses of the
select statement that the database server evaluates. The reason for this
is that before we can determine what to include in the final result set,
we need to know all of the possible columns that could be included in
the final result set.

Sample Table:

Basic Syntax:
SELECT column1,column2 FROM table_name

column1 , column2: names of the fields of the table

table_name: from where we want to fetch

SQL MOST IMPORTANT CONCEPTS-PART 1 HIMANSHU KUMAR

 pg. 3 | HIMANSHU KUMAR (LINKEDIN)

This query will return all the rows in the table with fields column1 ,
column2.

• To fetch the entire table or all the fields in the table:

 SELECT * FROM table_name;

• Query to fetch the fields ROLL_NO, NAME, AGE from the table
Student:

SELECT ROLL_NO, NAME, AGE FROM Student;

Output:

ROLL_NO NAME Age

1 Ram 18

2 RAMESH 18

3 SUJIT 20

4 SURESH 18

• To fetch all the fields from the table Student:

 SELECT * FROM Student;

Output:

ROLL_NO NAME ADDRESS PHONE Age

1 Ram Delhi XXXXXXXXXX 18

2 RAMESH GURGAON XXXXXXXXXX 18

3 SUJIT ROHTAK XXXXXXXXXX 20

4 SURESH Delhi XXXXXXXXXX 18

SQL MOST IMPORTANT CONCEPTS-PART 1 HIMANSHU KUMAR

 pg. 4 | HIMANSHU KUMAR (LINKEDIN)

Distinct Clause :-

The distinct keyword is used in conjunction with select keyword. It is
helpful when there is a need of avoiding duplicate values present in any
specific columns/table. When we use distinct keyword only the unique
values are fetched.

Syntax :

SELECT DISTINCT column1, column2

FROM table_name

column1, column2 : Names of the fields of the table.

table_name : Table from where we want to fetch the records.

This query will return all the unique combinations of rows in the table
with fields column1, column2.

NOTE: If distinct keyword is used with multiple columns, the distinct
combination is displayed in the result set.

Table - Student

ROLL_NO NAME ADDRESS PHONE AGE

1 RAM DELHI XXXXXXXXXX 18

2 RAMESH GURGAON XXXXXXXXXX 18

3 SUJIT ROHTAK XXXXXXXXXX 20

4 SURESH DELHI XXXXXXXXXX 18

3 SUJIT ROHTAK XXXXXXXXXX 20

2 RAMESH GURGAON XXXXXXXXXX 18

SQL MOST IMPORTANT CONCEPTS-PART 1 HIMANSHU KUMAR

 pg. 5 | HIMANSHU KUMAR (LINKEDIN)

Queries

• To fetch unique names from the NAME field -

SELECT DISTINCT NAME

FROM Student;

Output :

NAME

Ram

RAMESH

SUJIT

SURESH

• To fetch a unique combination of rows from the whole table -

SELECT DISTINCT *

FROM Student;

Output :

ROLL_NO NAME ADDRESS PHONE Age

1 Ram Delhi XXXXXXXXXX 18

2 RAMESH GURGAON XXXXXXXXXX 18

3 SUJIT ROHTAK XXXXXXXXXX 20

4 SURESH Delhi XXXXXXXXXX 18

SQL MOST IMPORTANT CONCEPTS-PART 1 HIMANSHU KUMAR

 pg. 6 | HIMANSHU KUMAR (LINKEDIN)

Note : Without the keyword distinct in both the above examples 6
records would have been fetched instead of 4, since in the original table
there are 6 records with the duplicate values.

Please write comments if you find anything incorrect, or you want to
share more information about the topic discussed above.

INSERT INTO Query :-

The INSERT INTO statement of SQL is used to insert a new row in a
table. There are two ways of using INSERT INTO statement for
inserting rows:

1. Only values: First method is to specify only the value of data to
be inserted without the column names.
Syntax:

2. INSERT INTO table_name VALUES (value1, value2, value3
,...);

3. table_name: name of the table.

4. value1, value2,.. : value of first column, second col
umn,... for the new record

5. Column names and values both: In the second method we will
specify both the columns which we want to fill and their
corresponding values as shown below:
Syntax:

6. INSERT INTO table_name (column1, column2, column3,..)
VALUES (value1, value2, value3,..);

7. table_name: name of the table.

8. column1: name of first column, second column ...

value1, value2, value3 : value of first column, second c
olumn,... for the new record

SQL MOST IMPORTANT CONCEPTS-PART 1 HIMANSHU KUMAR

 pg. 7 | HIMANSHU KUMAR (LINKEDIN)

Queries:

Method 1 example:
INSERT INTO Student VALUES ('5','HARSH','WEST BENGAL','875
9770477','19');

Output: The table Student will now look like:

ROLL_NO NAME ADDRESS PHONE Age

1 Ram Delhi 9455123451 18

2 RAMESH GURGAON 9562431543 18

3 SUJIT ROHTAK 9156253131 20

4 SURESH Delhi 9156768971 18

3 SUJIT ROHTAK 9156253131 20

2 RAMESH GURGAON 9562431543 18

5 HARSH WEST BENGAL 8759770477 19

SQL MOST IMPORTANT CONCEPTS-PART 1 HIMANSHU KUMAR

 pg. 8 | HIMANSHU KUMAR (LINKEDIN)

Method 2 (Inserting values in only specified columns):

INSERT INTO Student (ROLL_NO, NAME, Age) VALUES ('5','HARS
H','19');

Output: The table Student will now look like:

ROLL_NO NAME ADDRESS PHONE Age

1 Ram Delhi 9455123451 18

2 RAMESH GURGAON 9562431543 18

3 SUJIT ROHTAK 9156253131 20

4 SURESH Delhi 9156768971 18

3 SUJIT ROHTAK 9156253131 20

2 RAMESH GURGAON 9562431543 18

5 HARSH WEST BENGAL 8759770477 19

INSERT INTO Statement-

The INSERT INTO statement of SQL is used to insert a new row in a
table. There are two ways of using INSERT INTO statement for
inserting rows:

1. Only values: First method is to specify only the value of data to
be inserted without the column names.

INSERT INTO table_name VALUES (value1, value2,
value3,...); table_name: name of the table.
value1, value2,.. : value of first column, second column,... for the
new record

SQL MOST IMPORTANT CONCEPTS-PART 1 HIMANSHU KUMAR

 pg. 9 | HIMANSHU KUMAR (LINKEDIN)

2. Column names and values both: In the second method we will
specify both the columns which we want to fill and their
corresponding values as shown below:

INSERT INTO table_name (column1, column2, column3,..)
VALUES (value1, value2, value3,..); table_name: name of the
table.
column1: name of first column, second column ...
value1, value2, value3 : value of first column, second column,...
for the new record

Queries:

Method 1 (Inserting only values) :
INSERT INTO Student VALUES ('5','HARSH','WEST
BENGAL','XXXXXXXXXX','19');

Output: The table Student will now look like:

ROLL_NO NAME ADDRESS PHONE Age

1 Ram Delhi XXXXXXXXXX 18

2 RAMESH GURGAON XXXXXXXXXX 18

3 SUJIT ROHTAK XXXXXXXXXX 20

4 SURESH Delhi XXXXXXXXXX 18

SQL MOST IMPORTANT CONCEPTS-PART 1 HIMANSHU KUMAR

 pg. 10 | HIMANSHU KUMAR (LINKEDIN)

ROLL_NO NAME ADDRESS PHONE Age

3 SUJIT ROHTAK XXXXXXXXXX 20

2 RAMESH GURGAON XXXXXXXXXX 18

5 HARSH WEST BENGAL XXXXXXXXXX 19

Method 2 (Inserting values in only specified columns):
INSERT INTO Student (ROLL_NO, NAME, Age) VALUES
('5','PRATIK','19');

Output: The table Student will now look like:

ROLL_NO NAME ADDRESS PHONE Age

1 Ram Delhi XXXXXXXXXX 18

2 RAMESH GURGAON XXXXXXXXXX 18

3 SUJIT ROHTAK XXXXXXXXXX 20

4 SURESH Delhi XXXXXXXXXX 18

3 SUJIT ROHTAK XXXXXXXXXX 20

2 RAMESH GURGAON XXXXXXXXXX 18

5 PRATIK null null 19

Notice that the columns for which the values are not provided are filled
by null. Which is the default values for those columns.

Using SELECT in INSERT INTO Statement

We can use the SELECT statement with INSERT INTO statement to
copy rows from one table and insert them into another table.The use of
this statement is similar to that of INSERT INTO statement. The
difference is that the SELECT statement is used here to select data from

SQL MOST IMPORTANT CONCEPTS-PART 1 HIMANSHU KUMAR

 pg. 11 | HIMANSHU KUMAR (LINKEDIN)

a different table. The different ways of using INSERT INTO SELECT
statement are shown below:

• Inserting all columns of a table: We can copy all the data of a
table and insert into in a different table.

INSERT INTO first_table SELECT * FROM second_table;
first_table: name of first table.
second_table: name of second table.

We have used the SELECT statement to copy the data from one
table and INSERT INTO statement to insert in a different table.

• Inserting specific columns of a table: We can copy only those
columns of a table which we want to insert into in a different
table.
Syntax:

INSERT INTO first_table(names_of_columns1) SELECT
names_of_columns2 FROM second_table; first_table: name of
first table.
second_table: name of second table.
names of columns1: name of columns separated by comma(,) for
table 1.
names of columns2: name of columns separated by comma(,) for
table 2.

We have used the SELECT statement to copy the data of the
selected columns only from the second table and INSERT INTO
statement to insert in first table.

• Copying specific rows from a table: We can copy specific rows
from a table to insert into another table by using WHERE clause
with the SELECT statement. We have to provide appropriate
condition in the WHERE clause to select specific rows.

SQL MOST IMPORTANT CONCEPTS-PART 1 HIMANSHU KUMAR

 pg. 12 | HIMANSHU KUMAR (LINKEDIN)

INSERT INTO table1 SELECT * FROM table2 WHERE
condition; first_table: name of first table.
second_table: name of second table.
condition: condition to select specific rows.

Table2: LateralStudent

ROLL_NO NAME ADDRESS PHONE Age

7 SOUVIK DUMDUM XXXXXXXXXX 18

8 NIRAJ NOIDA XXXXXXXXXX 19

9 SOMESH ROHTAK XXXXXXXXXX 20

Queries:

Method 1(Inserting all rows and columns):

INSERT INTO Student SELECT * FROM LateralStudent;

Output: This query will insert all the data of the table LateralStudent in
the table Student. The table Student will now look like,

ROLL_N

O
NAME ADDRESS PHONE

Ag

e

1 Ram Delhi
XXXXXXXXX

X
18

2
RAMES

H

GURGAO

N

XXXXXXXXX

X
18

3 SUJIT ROHTAK
XXXXXXXXX

X
20

4 SURESH Delhi
XXXXXXXXX

X
18

3 SUJIT ROHTAK
XXXXXXXXX

X
20

SQL MOST IMPORTANT CONCEPTS-PART 1 HIMANSHU KUMAR

 pg. 13 | HIMANSHU KUMAR (LINKEDIN)

ROLL_N

O
NAME ADDRESS PHONE

Ag

e

2
RAMES

H

GURGAO

N

XXXXXXXXX

X
18

7 SOUVIK DUMDUM
XXXXXXXXX

X
18

8 NIRAJ NOIDA
XXXXXXXXX

X
19

9
SOMES

H
ROHTAK

XXXXXXXXX

X
20

• Method 2(Inserting specific columns):

INSERT INTO Student(ROLL_NO,NAME,Age) SELECT ROLL_NO,
NAME, Age FROM LateralStudent;

Output: This query will insert the data in the columns ROLL_NO,
NAME and Age of the table LateralStudent in the table Student
and the remaining columns in the Student table will be filled
by null which is the default value of the remaining columns. The
table Student will now look like,

ROLL_NO NAME ADDRESS PHONE Age

1 Ram Delhi XXXXXXXXXX 18

2 RAMESH GURGAON XXXXXXXXXX 18

3 SUJIT ROHTAK XXXXXXXXXX 20

4 SURESH Delhi XXXXXXXXXX 18

3 SUJIT ROHTAK XXXXXXXXXX 20

SQL MOST IMPORTANT CONCEPTS-PART 1 HIMANSHU KUMAR

 pg. 14 | HIMANSHU KUMAR (LINKEDIN)

ROLL_NO NAME ADDRESS PHONE Age

2 RAMESH GURGAON XXXXXXXXXX 18

7 SOUVIK null null 18

8 NIRAJ null null 19

9 SOMESH null null 20

• Select specific rows to insert:

INSERT INTO Student SELECT * FROM LateralStudent WHERE
Age = 18;

Output: This query will select only the first row from table
LateralStudent to insert into the table Student. The table Student
will now look like,

ROLL_NO NAME ADDRESS PHONE Age

1 Ram Delhi XXXXXXXXXX 18

2 RAMESH GURGAON XXXXXXXXXX 18

3 SUJIT ROHTAK XXXXXXXXXX 20

4 SURESH Delhi XXXXXXXXXX 18

3 SUJIT ROHTAK XXXXXXXXXX 20

2 RAMESH GURGAON XXXXXXXXXX 18

7 SOUVIK DUMDUM XXXXXXXXXX 18

SQL MOST IMPORTANT CONCEPTS-PART 1 HIMANSHU KUMAR

 pg. 15 | HIMANSHU KUMAR (LINKEDIN)

• To insert multiple rows in a table using Single SQL Statement

INSERT INTO table_name(Column1,Column2,Column3,.......)

VALUES (Value1, Value2,Value3,.....),

 (Value1, Value2,Value3,.....),

 (Value1, Value2,Value3,.....),

 ;

table_name: name of the table

Column1: name of first column, second column …

Value1, Value2, Value3 : value of first column, second col
umn,… for each new row inserted

You need To provide Multiple lists of values where each li
st is separated by ",". Every list of value corresponds to
values to be inserted in each new row of the table.

Values in the next list tells values to be inserted in the
next Row of the table.

Example:

The following SQL statement insert multiple rows in Student Table.

Input :
INSERT INTO STUDENT(ID, NAME,AGE,GRADE,CITY) VALUES(1,"AMI
T KUMAR",15,10,"DELHI"),
 (2,"GAU
RI RAO",18,12,"BANGALORE"),
 (3,"MAN
AV BHATT",17,11,"NEW DELHI"),
 (4,"RI
YA KAPOOR",10,5,"UDAIPUR");

SQL MOST IMPORTANT CONCEPTS-PART 1 HIMANSHU KUMAR

 pg. 16 | HIMANSHU KUMAR (LINKEDIN)

Output : STUDENT TABLE This query will insert all values in each

successive row in the STUDENT TABLE . Thus STUDENT Table will look

like this:

ID NAME AGE GRADE CITY

1 AMIT KUMAR 15 10 DELHI

2 GAURI RAO 16 12 BANGALORE

3 MANAV BHATT 17 11 NEW DELHI

4 RIYA KAPOOR 10 5 UDAIPUR

DELETE Statement –

The DELETE Statement in SQL is used to delete existing records from a
table. We can delete a single record or multiple records depending on
the condition we specify in the WHERE clause.

Basic Syntax:

DELETE FROM table_name WHERE some_condition;

table_name: name of the table

some_condition: condition to choose particular record.

Note: We can delete single as well as multiple records depending on
the condition we provide in WHERE clause. If we omit the WHERE
clause then all of the records will be deleted and the table will be
empty.

SQL MOST IMPORTANT CONCEPTS-PART 1 HIMANSHU KUMAR

 pg. 17 | HIMANSHU KUMAR (LINKEDIN)

Sample Table:

Example Queries:

• Deleting single record: Delete the rows where NAME = 'Ram'.
This will delete only the first row.

• DELETE FROM Student WHERE NAME = 'Ram';

Output: The above query will delete only the first row and the
table Student will now look like,

ROLL_NO NAME ADDRESS PHONE Age

2 RAMESH GURGAON XXXXXXXXXX 18

3 SUJIT ROHTAK XXXXXXXXXX 20

4 SURESH Delhi XXXXXXXXXX 18

3 SUJIT ROHTAK XXXXXXXXXX 20

2 RAMESH GURGAON XXXXXXXXXX 18

• Deleting multiple records: Delete the rows from the table
Student where Age is 20. This will delete 2 rows(third row and

SQL MOST IMPORTANT CONCEPTS-PART 1 HIMANSHU KUMAR

 pg. 18 | HIMANSHU KUMAR (LINKEDIN)

fifth row).

• DELETE FROM Student WHERE Age = 20;

Output: The above query will delete two rows(third row and fifth
row) and the table Student will now look like,

ROLL_NO NAME ADDRESS PHONE Age

1 Ram Delhi XXXXXXXXXX 18

2 RAMESH GURGAON XXXXXXXXXX 18

4 SURESH Delhi XXXXXXXXXX 18

2 RAMESH GURGAON XXXXXXXXXX 18

• Delete all of the records: There are two queries to do this as
shown below,

• query1: "DELETE FROM Student";

• query2: "DELETE * FROM Student";

Output: All of the records in the table will be deleted, there are
no records left to display. The table Student will become empty!

SQL MOST IMPORTANT CONCEPTS-PART 1 HIMANSHU KUMAR

 pg. 19 | HIMANSHU KUMAR (LINKEDIN)

UPDATE Statement –

The UPDATE statement in SQL is used to update the data of an existing
table in database. We can update single columns as well as multiple
columns using UPDATE statement as per our requirement.

Basic Syntax-

UPDATE table_name SET column1 = value1, column2 = value2,.
..

WHERE condition;

table_name: name of the table

column1: name of first , second, third column....

value1: new value for first, second, third column....

condition: condition to select the rows for which the

values of columns needs to be updated.

NOTE: In the above query the SET statement is used to set new values
to the particular column and the WHERE clause is used to select the
rows for which the columns are needed to be updated. If we have not
used the WHERE clause then the columns in all the rows will be
updated. So the WHERE clause is used to choose the particular rows.

SQL MOST IMPORTANT CONCEPTS-PART 1 HIMANSHU KUMAR

 pg. 20 | HIMANSHU KUMAR (LINKEDIN)

Example Queries

o Updating single column: Update the column NAME and set
the value to 'PRATIK' in all the rows where Age is 20.

o UPDATE Student SET NAME = 'PRATIK' WHERE Age = 20
;

Output: This query will update two rows(third row and fifth row) and
the table Student will now look like,

ROLL_N

O
NAME ADDRESS PHONE

Ag

e

1 Ram Delhi
XXXXXXXXX

X
18

2
RAMES

H

GURGAO

N

XXXXXXXXX

X
18

3 PRATIK ROHTAK
XXXXXXXXX

X
20

4 SURESH Delhi
XXXXXXXXX

X
18

3 PRATIK ROHTAK
XXXXXXXXX

X
20

2
RAMES

H

GURGAO

N

XXXXXXXXX

X
18

Updating multiple columns: Update the columns NAME to 'PRATIK'
and ADDRESS to 'SIKKIM' where ROLL_NO is 1.

UPDATE Student SET NAME = 'PRATIK', ADDRESS = 'SIKKIM' WHE
RE ROLL_NO = 1;

SQL MOST IMPORTANT CONCEPTS-PART 1 HIMANSHU KUMAR

 pg. 21 | HIMANSHU KUMAR (LINKEDIN)

Output
The above query will update two columns in the first row
and the table Student will now look like,

ROLL_N

O
NAME ADDRESS PHONE

Ag

e

1 PRATIK SIKKIM
XXXXXXXXX

X
18

2
RAMES

H

GURGAO

N

XXXXXXXXX

X
18

3 PRATIK ROHTAK
XXXXXXXXX

X
20

4 SURESH Delhi
XXXXXXXXX

X
18

3 PRATIK ROHTAK
XXXXXXXXX

X
20

2
RAMES

H

GURGAO

N

XXXXXXXXX

X
18

Note: For updating multiple columns we have used
comma(,) to separate the names and values of two columns.

• Omitting WHERE clause: If we omit the WHERE clause from the
update query then all of the rows will get updated.

• UPDATE Student SET NAME = 'PRATIK';

Output: The table Student will now look like,

ROLL_NO NAME ADDRESS PHONE Age

1 PRATIK Delhi XXXXXXXXXX 18

2 PRATIK GURGAON XXXXXXXXXX 18

SQL MOST IMPORTANT CONCEPTS-PART 1 HIMANSHU KUMAR

 pg. 22 | HIMANSHU KUMAR (LINKEDIN)

ROLL_NO NAME ADDRESS PHONE Age

3 PRATIK ROHTAK XXXXXXXXXX 20

4 PRATIK Delhi XXXXXXXXXX 18

3 PRATIK ROHTAK XXXXXXXXXX 20

2 PRATIK GURGAON XXXXXXXXXX 18

SELECT TOP Clause –

SELECT TOP clause is used to fetch limited number of rows from a
database. This clause is very useful while dealing with large databases.

Basic Syntax:

• SELECT TOP value column1,column2 FROM table_name;

• value: number of rows to return from top

• column1 , column2: fields in the table

• table_name: name of table

Syntax using Percent

• SELECT TOP value PERCENT column1,column2 FROM table_n
ame;

• value: percentage of number of rows to return from to
p

• column1 , column2: fields in the table

• table_name: name of table

SQL MOST IMPORTANT CONCEPTS-PART 1 HIMANSHU KUMAR

 pg. 23 | HIMANSHU KUMAR (LINKEDIN)

Queries

To fetch first two data set from Student table.

SELECT TOP 2 * FROM Student;

Output:

ROLL_

NO

NAM

E

ADDRE

SS
PHONE

A

ge

1 Ram Delhi
XXXXXXX

XXX
18

2
RAME

SH

GURGA

ON

XXXXXXX

XXX
18

To fetch 50 percent of the total records from Student table.

SELECT TOP 50 PERCENT * FROM Student;

SQL MOST IMPORTANT CONCEPTS-PART 1 HIMANSHU KUMAR

 pg. 24 | HIMANSHU KUMAR (LINKEDIN)

Output:

ROLL_

NO
NAME

ADDRES

S
PHONE

Ag

e

1 Ram Delhi
XXXXXXXX

XX
18

2
RAMES

H

GURGA

ON

XXXXXXXX

XX
18

3 SUJIT ROHTAK
XXXXXXXX

XX
20

NOTE: To get the same functionality on MySQL and Oracle databases
there is a bit of difference in the basic syntax;

Equivalent Syntaxes are as follows:

For MySQL databases:

SELECT column1,column2 FROM table_name LIMIT value;

column1 , column2: fields int the table

table_name: name of table

value: number of rows to return from top

For Oracle databases:

SELECT column1,column2 FROM table_name WHERE ROWNUM <= val
ue;

column1 , column2: fields int the table

table_name: name of table

value: number of rows to return from top

SQL MOST IMPORTANT CONCEPTS-PART 1 HIMANSHU KUMAR

 pg. 25 | HIMANSHU KUMAR (LINKEDIN)

ORDER BY –

The ORDER BY statement in SQL is used to sort the fetched data in either
ascending or descending according to one or more columns.

• By default ORDER BY sorts the data in ascending order.
• We can use the keyword DESC to sort the data in descending order

and the keyword ASC to sort in ascending order.

Sort according to one column:

 To sort in ascending or descending order we can use the keywords ASC
or DESC respectively.

Syntax:

SELECT * FROM table_name ORDER BY column_name ASC|DESC

//Where

table_name: name of the table.

column_name: name of the column according to which the dat
a is needed to be arranged.

ASC: to sort the data in ascending order.

DESC: to sort the data in descending order.

| : use either ASC or DESC to sort in ascending or descend
ing order//

Sort according to multiple columns:

To sort in ascending or descending order we can use the keywords ASC
or DESC respectively. To sort according to multiple columns, separate
the names of columns by the (,) operator.

SQL MOST IMPORTANT CONCEPTS-PART 1 HIMANSHU KUMAR

 pg. 26 | HIMANSHU KUMAR (LINKEDIN)

Syntax:

SELECT * FROM table_name ORDER BY column1 ASC|DESC , colum
n2 ASC|DESC

Now consider the above database table and find the results of different
queries.

Sort according to a single column:
In this example, we will fetch all data from the table Student and sort the
result in descending order according to the column ROLL_NO.

Query:

SELECT * FROM Student ORDER BY ROLL_NO DESC;

Output:

ROLL_NO NAME ADDRESS PHONE Age

8 NIRAJ ALIPUR XXXXXXXXXX 19

7 ROHIT BALURGHAT XXXXXXXXXX 18

6 DHANRAJ BARABAJAR XXXXXXXXXX 20

5 SAPTARHI KOLKATA XXXXXXXXXX 19

4 DEEP RAMNAGAR XXXXXXXXXX 18

SQL MOST IMPORTANT CONCEPTS-PART 1 HIMANSHU KUMAR

 pg. 27 | HIMANSHU KUMAR (LINKEDIN)

ROLL_NO NAME ADDRESS PHONE Age

3 RIYANKA SILIGURI XXXXXXXXXX 20

2 PRATIK BIHAR XXXXXXXXXX 19

1 HARSH DELHI XXXXXXXXXX 18

In the above example, if we want to sort in ascending order we have to
use ASC in place of DESC.

Sort according to multiple columns:
In this example we will fetch all data from the table Student and then
sort the result in ascending order first according to the column Age. and
then in descending order according to the column ROLL_NO.
Query:

SELECT * FROM Student ORDER BY Age ASC , ROLL_NO DESC;

Output:

ROLL_NO NAME ADDRESS PHONE Age

7 ROHIT BALURGHAT XXXXXXXXXX 18

4 DEEP RAMNAGAR XXXXXXXXXX 18

1 HARSH DELHI XXXXXXXXXX 18

8 NIRAJ ALIPUR XXXXXXXXXX 19

5 SAPTARHI KOLKATA XXXXXXXXXX 19

2 PRATIK BIHAR XXXXXXXXXX 19

6 DHANRAJ BARABAJAR XXXXXXXXXX 20

3 RIYANKA SILIGURI XXXXXXXXXX 20

In the above output, we can see that first the result is sorted in ascending
order according to Age. There are multiple rows of having the same Age.

SQL MOST IMPORTANT CONCEPTS-PART 1 HIMANSHU KUMAR

 pg. 28 | HIMANSHU KUMAR (LINKEDIN)

Now, sorting further this result-set according to ROLL_NO will sort the
rows with the same Age according to ROLL_NO in descending order.

Note:

ASC is the default value for the ORDER BY clause. So, if we don't specify
anything after the column name in the ORDER BY clause, the output will
be sorted in ascending order by default.

Take another example of the following query will give similar output as
the above:

 Query:

SELECT * FROM Student ORDER BY Age , ROLL_NO DESC;

Output:

ROLL_NO NAME ADDRESS PHONE Age

7 ROHIT BALURGHAT XXXXXXXXXX 18

4 DEEP RAMNAGAR XXXXXXXXXX 18

1 HARSH DELHI XXXXXXXXXX 18

8 NIRAJ ALIPUR XXXXXXXXXX 19

5 SAPTARHI KOLKATA XXXXXXXXXX 19

2 PRATIK BIHAR XXXXXXXXXX 19

6 DHANRAJ BARABAJAR XXXXXXXXXX 20

3 RIYANKA SILIGURI XXXXXXXXXX 20

SQL MOST IMPORTANT CONCEPTS-PART 1 HIMANSHU KUMAR

 pg. 29 | HIMANSHU KUMAR (LINKEDIN)

Sorting by column number (instead of name):

An integer that identifies the number of the column in the SelectItems in
the underlying query of the SELECT statement. Column number must be
greater than 0 and not greater than the number of columns in the result
table. In other words, if we want to order by a column, that column must
be specified in the SELECT list.

The rule checks for ORDER BY clauses that reference select
list columns using the column number instead of the column name. The
column numbers in the ORDER BY clause impairs the readability of the
SQL statement. Further, changing the order of columns in the SELECT
list has no impact on the ORDER BY when the columns are referred by
names instead of numbers.

Syntax:

Order by Column_Number asc/desc

Here we take an example to sort a database table according to column
1 i.e Roll_Number. For this a query will be:

Query:

CREATE TABLE studentinfo

(Roll_no INT,

NAME VARCHAR(25),

Address VARCHAR(20),

CONTACTNO BIGINT NOT NULL,

Age INT);

INSERT INTO studentinfo

VALUES (7,'ROHIT','GAZIABAD',9193458625,18),

(4,'DEEP','RAMNAGAR',9193458546,18),

(1,'HARSH','DELHI',9193342625,18),

(8,'NIRAJ','ALIPUR',9193678625,19),

(5,'SAPTARHI','KOLKATA',9193789625,19),

SQL MOST IMPORTANT CONCEPTS-PART 1 HIMANSHU KUMAR

 pg. 30 | HIMANSHU KUMAR (LINKEDIN)

(2,'PRATIK','BIHAR',9193457825,19),

(6,'DHANRAJ','BARABAJAR',9193358625,20),

(3,'RIYANKA','SILIGURI',9193218625,20);

SELECT Name, Address

FROM studentinfo

ORDER BY 1

Output:

SQL MOST IMPORTANT CONCEPTS-PART 1 HIMANSHU KUMAR

 pg. 31 | HIMANSHU KUMAR (LINKEDIN)

Aliases –

Aliases are the temporary names given to table or column for the
purpose of a particular SQL query. It is used when name of column or
table is used other than their original names, but the modified name is
only temporary.

Aliases are created to make table or column names more readable.

The renaming is just a temporary change and table name does not
change in the original database.

Aliases are useful when table or column names are big or not very
readable.

These are preferred when there are more than one table involved in a
query.

Basic Syntax:

For column alias:

• SELECT column as alias_name FROM table_name;

• column: fields in the table

• alias_name: temporary alias name to be used in replac
ement of original column name

• table_name: name of table

For table alias:

• SELECT column FROM table_name as alias_name;

• column: fields in the table

• table_name: name of table

• alias_name: temporary alias name to be used in replac
ement of original table name

SQL MOST IMPORTANT CONCEPTS-PART 1 HIMANSHU KUMAR

 pg. 32 | HIMANSHU KUMAR (LINKEDIN)

Queries for illustrating column alias

To fetch ROLL_NO from Student table using CODE as alias name.

SELECT ROLL_NO AS CODE FROM Student;

Output:

CODE

1

2

3

4

To fetch Branch using Stream as alias name and Grade as CGPA from
table Student_Details.

SELECT Branch AS Stream,Grade as CGPA FROM Student_Details
;

SQL MOST IMPORTANT CONCEPTS-PART 1 HIMANSHU KUMAR

 pg. 33 | HIMANSHU KUMAR (LINKEDIN)

Output:

Stream CGPA

Information Technology O

Computer Science E

Computer Science O

Mechanical Engineering A

Queries for illustrating table alias

Generally table aliases are used to fetch the data from more than just
single table and connect them through the field relations.

To fetch Grade and NAME of Student with Age = 20.

SELECT s.NAME, d.Grade FROM Student AS s, Student_Details

AS d WHERE s.Age=20 AND s.ROLL_NO=d.ROLL_NO;

Output:

NAME Grade

SUJIT O

SQL MOST IMPORTANT CONCEPTS-PART 1 HIMANSHU KUMAR

 pg. 34 | HIMANSHU KUMAR (LINKEDIN)

Please write comments if you find anything incorrect, or you want to share more
information about the topic discussed above.

Wildcard operators –

Prerequisite: SQL | WHERE Clause In the above mentioned article
WHERE Clause is discussed in which LIKE operator is also explained,
where you must have encountered the word wildcards now lets get
deeper into Wildcards.

Wildcard operators are used with LIKE operator, there are four basic
operators:

Operator Description

%
It is used in substitute of zero or
more characters.

_ It is used in substitute of one
character.

_
It is used to substitute a range of
characters.

[range_of_characters]
It is used to fetch matching set or
range of characters specified inside
the brackets.

[^range_of_characters] or
[!range of characters]

It is used to fetch non-matching set
or range of characters specified
inside the brackets.

SQL MOST IMPORTANT CONCEPTS-PART 1 HIMANSHU KUMAR

 pg. 35 | HIMANSHU KUMAR (LINKEDIN)

Basic syntax:
SELECT column1,column2 FROM table_name WHERE column LIKE w
ildcard_operator;

column1 , column2: fields in the table

table_name: name of table

column: name of field used for filtering data

Queries

To fetch records from Student table with NAME ending with letter 'T'.

SELECT * FROM Student WHERE NAME LIKE '%T';

Output:

ROLL_NO NAME ADDRESS PHONE Age

3 SUJIT ROHTAK XXXXXXXXXX 20

3 SUJIT ROHTAK XXXXXXXXXX 20

To fetch records from Student table with NAME ending any letter but
starting from 'RAMES'.

SQL MOST IMPORTANT CONCEPTS-PART 1 HIMANSHU KUMAR

 pg. 36 | HIMANSHU KUMAR (LINKEDIN)

• SELECT * FROM Student WHERE NAME LIKE 'RAMES_';

Output:
2RAMESHGURGAONXXXXXXXXXX18

ROLL_NO NAME ADDRESS PHONE Age

2 RAMESH GURGAON XXXXXXXXXX 18

• To fetch records from Student table with address containing
letters 'a', 'b', or 'c'.

• SELECT * FROM Student WHERE ADDRESS LIKE '%[A-C]%';

Output:
2RAMESHGURGAONXXXXXXXXXX18

ROLL_NO NAME ADDRESS PHONE Age

2 RAMESH GURGAON XXXXXXXXXX 18

2 RAMESH GURGAON XXXXXXXXXX 18

3 SUJIT ROHTAK XXXXXXXXXX 20

3 SUJIT ROHTAK XXXXXXXXXX 20

• To fetch records from Student table with ADDRESS not
containing letters 'a', 'b', or 'c'.

• SELECT * FROM Student WHERE ADDRESS LIKE '%[^A-C]%';

Output:

ROLL_NO NAME ADDRESS PHONE Age

1 Ram Delhi XXXXXXXXXX 18

4 SURESH Delhi XXXXXXXXXX 18

SQL MOST IMPORTANT CONCEPTS-PART 1 HIMANSHU KUMAR

 pg. 37 | HIMANSHU KUMAR (LINKEDIN)

• To fetch records from Student table with PHONE field having a '9'
in 1st position and a '5' in 4th position.

• SELECT * FROM Student WHERE PHONE LIKE '9__5%';

Output:

ROLL_NO NAME ADDRESS PHONE Age

1 Ram Delhi XXXXXXXXXX 18

• To fetch records from Student table with ADDRESS containing
total of 6 characters.

• SELECT * FROM Student WHERE ADDRESS LIKE '______';

Output:

ROLL_NO NAME ADDRESS PHONE Age

3 SUJIT ROHTAK XXXXXXXXXX 20

3 SUJIT ROHTAK XXXXXXXXXX 20

• To fetch records from Student table with ADDRESS containing
'OH' at any position, and the result set should not contain
duplicate data.

• SELECT DISTINCT * FROM Student WHERE ADDRESS LIKE '%O
H%';

SQL MOST IMPORTANT CONCEPTS-PART 1 HIMANSHU KUMAR

 pg. 38 | HIMANSHU KUMAR (LINKEDIN)

Output:

ROLL_NO NAME ADDRESS PHONE Age

3 SUJIT ROHTAK XXXXXXXXXX 20

Join (Inner, Left, Right and Full Joins) –

SQL Join statement is used to combine data or rows from two or more
tables based on a common field between them. Different types of Joins
are as follows:

• INNER JOIN
• LEFT JOIN
• RIGHT JOIN
• FULL JOIN

Consider the two tables below:

Student

StudentCourse

The simplest Join is INNER JOIN.

A. INNER JOIN

The INNER JOIN keyword selects all rows from both the tables as long
as the condition is satisfied. This keyword will create the result-set by
combining all rows from both the tables where the condition satisfies
i.e value of the common field will be the same.

SQL MOST IMPORTANT CONCEPTS-PART 1 HIMANSHU KUMAR

 pg. 39 | HIMANSHU KUMAR (LINKEDIN)

Syntax:

SELECT table1.column1,table1.column2,table2.column1,....

FROM table1

INNER JOIN table2

ON table1.matching_column = table2.matching_column;

table1: First table.

table2: Second table

matching_column: Column common to both the tables.

Note: We can also write JOIN instead of INNER JOIN. JOIN is same as
INNER JOIN.

Example Queries(INNER JOIN)

This query will show the names and age of students enrolled in
different courses.

SELECT StudentCourse.COURSE_ID, Student.NAME, Student.AGE
FROM Student

INNER JOIN StudentCourse

ON Student.ROLL_NO = StudentCourse.ROLL_NO;

Output:

B. LEFT JOIN

This join returns all the rows of the table on the left side of the join and
matches rows for the table on the right side of the join. For the rows for
which there is no matching row on the right side, the result-set will
contain null. LEFT JOIN is also known as LEFT OUTER JOIN.

SQL MOST IMPORTANT CONCEPTS-PART 1 HIMANSHU KUMAR

 pg. 40 | HIMANSHU KUMAR (LINKEDIN)

Syntax:

SELECT table1.column1,table1.column2,table2.column1,....

FROM table1

LEFT JOIN table2

ON table1.matching_column = table2.matching_column;

table1: First table.

table2: Second table

matching_column: Column common to both the tables.

Note: We can also use LEFT OUTER JOIN instead of LEFT JOIN, both
are the same.

Example Queries(LEFT JOIN):

SELECT Student.NAME,StudentCourse.COURSE_ID

FROM Student

LEFT JOIN StudentCourse

ON StudentCourse.ROLL_NO = Student.ROLL_NO;

Output:

C. RIGHT JOIN

RIGHT JOIN is similar to LEFT JOIN. This join returns all the rows of the
table on the right side of the join and matching rows for the table on the
left side of the join. For the rows for which there is no matching row on
the left side, the result-set will contain null. RIGHT JOIN is also known
as RIGHT OUTER JOIN.

Syntax:

SELECT table1.column1,table1.column2,table2.column1,....

FROM table1

RIGHT JOIN table2

ON table1.matching_column = table2.matching_column;

SQL MOST IMPORTANT CONCEPTS-PART 1 HIMANSHU KUMAR

 pg. 41 | HIMANSHU KUMAR (LINKEDIN)

table1: First table.

table2: Second table

matching_column: Column common to both the tables.

Note: We can also use RIGHT OUTER JOIN instead of RIGHT JOIN, both
are the same.

Example Queries(RIGHT JOIN):

SELECT Student.NAME,StudentCourse.COURSE_ID

FROM Student

RIGHT JOIN StudentCourse

ON StudentCourse.ROLL_NO = Student.ROLL_NO;

SQL MOST IMPORTANT CONCEPTS-PART 1 HIMANSHU KUMAR

 pg. 42 | HIMANSHU KUMAR (LINKEDIN)

Output:

D. FULL JOIN

FULL JOIN creates the result-set by combining results of both LEFT
JOIN and RIGHT JOIN. The result-set will contain all the rows from both
tables. For the rows for which there is no matching, the result-set will
contain NULL values.

Syntax:

SELECT table1.column1,table1.column2,table2.column1,....

FROM table1

FULL JOIN table2

ON table1.matching_column = table2.matching_column;

table1: First table.

table2: Second table

matching_column: Column common to both the tables.

SQL MOST IMPORTANT CONCEPTS-PART 1 HIMANSHU KUMAR

 pg. 43 | HIMANSHU KUMAR (LINKEDIN)

Example Queries(FULL JOIN):

SELECT Student.NAME,StudentCourse.COURSE_ID

FROM Student

FULL JOIN StudentCourse

ON StudentCourse.ROLL_NO = Student.ROLL_NO;

Output:

NAME

COURSE_ID

HARSH

1

PRATIK

2

RIYANKA

2

DEEP

3

SAPTARHI

1

DHANRAJ

NULL

ROHIT

NULL

NIRAJ

NULL

NULL

4

NULL

5

NULL

4

SQL MOST IMPORTANT CONCEPTS-PART 1 HIMANSHU KUMAR

 pg. 44 | HIMANSHU KUMAR (LINKEDIN)

CREATE-

There are two CREATE statements available in SQL:
CREATE DATABASE

CREATE TABLE

CREATE DATABASE

A Database is defined as a structured set of data. So, in SQL
the very first step to store the data in a well structured manner
is to create a database. The CREATE DATABASE statement is
used to create a new database in SQL.
Syntax:
CREATE DATABASE database_name;

database_name: name of the database.

Example Query: This query will create a new database in SQL
and name the database as my_database.

CREATE DATABASE my_database;

CREATE TABLE

We have learned above about creating databases. Now to
store the data we need a table to do that. The CREATE TABLE
statement is used to create a table in SQL. We know that a
table comprises of rows and columns. So while creating tables
we have to provide all the information to SQL about the names
of the columns, type of data to be stored in columns, size of
the data etc. Let us now dive into details on how to use
CREATE TABLE statement to create tables in SQL.

SQL MOST IMPORTANT CONCEPTS-PART 1 HIMANSHU KUMAR

 pg. 45 | HIMANSHU KUMAR (LINKEDIN)

Syntax:

CREATE TABLE table_name

(

column1 data_type(size),

column2 data_type(size),

column3 data_type(size),

....

);
table_name: name of the table.

column1 name of the first column.

data_type: Type of data we want to store in the par
ticular column.
For example,int for integer data.

size: Size of the data we can store in a particular
column. For example if for

a column we specify the data_type as int and size a
s 10 then this column can store an integer

number of maximum 10 digits.

Example Query: This query will create a table named
Students with three columns, ROLL_NO, NAME and SUBJECT.
CREATE TABLE Students

(

ROLL_NO int(3),

NAME varchar(20),

SUBJECT varchar(20),);

SQL MOST IMPORTANT CONCEPTS-PART 1 HIMANSHU KUMAR

 pg. 46 | HIMANSHU KUMAR (LINKEDIN)

This query will create a table named Students. The ROLL_NO
field is of type int and can store an integer number of size 3.
The next two columns NAME and SUBJECT are of type varchar
and can store characters and the size 20 specifies that these
two fields can hold maximum of 20 characters.

Part -2 topics (UPCOMING)

➢ Constraints

➢ Comments

➢ GROUP BY

➢ Views

➢ Functions (Aggregate

and Scalar Functions)

➢ Query Processing

➢ WHERE Clause

➢ AND and OR operators

➢ Union Clause

➢ Join (Cartesian Join &

Self Join)

➢ DROP, DELETE,

TRUNCATE

➢ DROP, TRUNCATE

➢ Date functions

➢ EXISTS

➢ WITH clause

➢ NULL Values

➢ ALL and ANY

➢ BETWEEN & IN Operator

➢ Arithmetic Operators

➢ DDL, DML, TCL and DCL

➢ Creating Roles

HIMANSHU KUMAR(LINKEDIN)

https://www.linkedin.com/in/himanshukumarmahuri

CREDITS- INTERNET

DISCLOSURE- THE DATA AND IMAGES ARE TAKEN FROM GOOGLE AND INTERNET.

𝑪𝑯𝑬𝑪𝑲𝑶𝑼𝑻 𝑨𝑵𝑫 𝑫𝑶𝑾𝑵𝑳𝑶𝑨𝑫 𝑴𝒀 𝑨𝑳𝑳 𝑵𝑶𝑻𝑬𝑺

𝑳𝑰𝑵𝑲- https://linktr.ee/exclusive_notes

